«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 52

Heritability of Types of Pregeometry with Respect to Compositions of Structures

Author(s)
Sergey B. Malyshev1

1Novosibirsk State Technical University, Novosibirsk, Russian Federation

Abstract
In this paper, we investigate how the pregeometry arising from the composition of two predicate signature structures inherits the types of pregeometries of the original stuctures. We establish that in the case of degeneracy, modularity and locally finiteness of a graph signature’s pregeometry, the pregeometry of their composition inherits the corresponding properties. We also give counterexamples to the converse statement.
About the Authors
Sergey B. Malyshev, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation, sergei2-mal1@yandex.ru
For citation
Malyshev S. B. Heritability of Types of Pregeometry with Respect to Compositions of Structures. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 52, pp. 162–174. (in Russian)

https://doi.org/10.26516/1997-7670.2025.52.162

Keywords
pregeometry, structure composition, degeneracy, modularity, locally finite, algebraic closure
UDC
510.67
MSC
03C30, 03C65
DOI
https://doi.org/10.26516/1997-7670.2025.52.162
References
  1. Emelichev V.A., Melnikov O.I., Sarvanov V.I., Tyshkevich R.I. Lectures on graph theory. Moscow, Science Publ., 1990, 384 p. (in Russian)
  2. Malyshev S.B. Kinds of pregeometries of cubic theories. Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 140—149. https://doi.org/10.26516/1997-7670.2022.41.140
  3. Malyshev S.B. Kinds of pregeometries of acyclic theories. Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 46, pp. 110—120. https://doi.org/10.26516/1997-7670.2023.46.110
  4. Sudoplatov S.V. Group polygonometries. Novosibirsk, NSTU Publ., 2013, 302 p.
  5. Sudoplatov S.V. Closures and generating sets related to combinations of structures. Bulletin of Irkutsk State University. Series Mathematics, 2016, vol. 16, pp. 131–144.
  6. Berenstein A., Vassiliev E. On lovely pairs of geometric structures. Annals of Pure and Applied Logic, 2010, vol. 161, no. 7, pp. 866–878.
  7. Berenstein A., Vassiliev E. Weakly one-based geometric theories. J. Symb. Logic, 2012, vol. 77, no. 2, pp. 392–422.
  8. Berenstein A., Vassiliev E. Geometric structures with a dense independent subset. Selecta Math., 2016, vol. 22, no. 1, pp. 191–225.
  9. Cherlin G.L., Harrington L., Lachlan A.H. ω-categorical, ω-stable structures. Annals of Pure and Applied Logic, 1986, vol. 28, pp. 103–135.
  10. Emel’Yanov D.Y., Kulpeshov B.S., Sudoplatov S.V. Algebras of binary formulas for compositions of theories. Algebra and Logic, 2020, vol. 59, no. 4, pp. 295-–312. https://doi.org/10.1007/s10469-020-09602-y
  11. Emel’Yanov D.Y., Kulpeshov B.S., Sudoplatov S.V. Algebras of binary formulas for compositions of theories. Algebra and Logic, 2020, vol. 59, no. 4, pp. 432–457. https://doi.org/10.1007/s10469-020-09602-y
  12. Hodges W. Model theory. Encyclopedia of Mathematics and its Applications. Cambridge, Cambridge University Press, 1994, vol. 42, 772 p.
  13. Hrushovski E. A new strongly minimal set. Annals of Pure and Applied Logic, 1993, vol. 62, pp. 147–166.
  14. Markhabatov N.D., Sudoplatov S.V. Topologies, ranks, and closures for families of theories. I. Algebra and Logic, 2021, vol. 59, no. 6, pp. 437–455.
  15. Mukhopadhyay M.M., Vassiliev E. On the Vamos matroid, homogeneous pregeometries and dense pairs. Australian Journal of Combinatorics, 2019, vol. 75, no. 1, pp. 158–170.
  16. Pillay A. Geometric Stability Theory. Oxford, Clarendon Press, 1996, 361 p.
  17. Pillay A. Some remarks on definable equivalence relations in o-minimal structures. The Journal of Symbolic Logic, 1986, vol. 51, no. 3, pp. 709–714 .
  18. Sudoplatov S.V. Models of cubic theories. Bulletin of the Section of Logic, 2014, vol. 43, no. 1–2, pp. 19–34.
  19. Zilber B.I. Uncountably categorical theories. American Mathematical Society, 1993, 117 p.
  20. Zilber B.I. Strongly minimal countably categorical theories. Sibirsk Matematika Zhurnal, 1980, vol. 21, no. 2, pp. 98–112.
  21. Zilber B.I. Strongly minimal countably categorical theories II. Sibirsk Matematika Zhurnal, 1984, vol. 25, no. 3, pp. 71–88.

Full text (russian)