«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 52

Integration of Equations of the Two-body Problem Using a Total Polynomial System of Partial Differential Equations

Author(s)
Levon K. Babadzanjanz1, Irina Yu. Pototskaya1, Yulia Yu. Pupysheva1

1St. Petersburg State University, St. Petersburg, Russian Federation

Abstract
The polynomial total system of partial differential equations constructed for the two-body problem is described in this paper. The algorithm for its numerical integration using the Taylor series method is presented. Recurrent formulas for Taylor coefficients obtained for the problem being solved are provided.
About the Authors

Levon K. Babadzanjanz, Dr. Sci. (Phys.–Math.), Prof., St. Petersburg State University, St. Petersburg, 198504, Russian Federation

Irina Yu. Pototskaya, Cand. Sci. (Phys.Math.), Assoc. Prof., St.Petersburg State University, St.Petersburg, 198504, Russian Federation, i.pototskaia@spbu.ru

Yulia Yu. Pupysheva, Cand. Sci. (Phys.Math.), Assoc. Prof., St.Petersburg State University, St.Petersburg, 198504, Russian Federation, j poupycheva@mail.ru

For citation
Babadzanjanz L. K., Pototskaya I. Yu., Pupysheva Yu. Yu. Integration of Equations of the Two-body Problem Using a Total Polynomial System of Partial Differential Equations. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 52, pp. 58–70. (in Russian)

https://doi.org/10.26516/1997-7670.2025.52.58

Keywords
two-body problem, Taylor Series Method, total polynomial PDE system, numerical PDE system integration
UDC
519.63, 521.1
MSC
35F20, 65D30
DOI
https://doi.org/10.26516/1997-7670.2025.52.58
References
  1. Babadzanjanz L.K. Metod dopolnitelnyh peremennyh [Method of additional variables]. Vestnik SPbGU. Serija 10, Prikladnaja matematika. Informatika. Processy upravlenija, 2010, iss. 4, pp. 3–11. (in Russian)
  2. Babadzanjanz L.K., Bolshakov A.I. Realizacija metoda rjadov Tejlora dlja reshenija obyknovennyh differencialnyh uravnenij [Implementation of the Taylor series method for solving ordinary differential equations]. Vychislitelnye metody i programmirovanie, 2012, vol. 13, pp. 497–510. (in Russian)
  3. Babadzanjanz L.K., Bregman K.M. Algoritm metoda dopolnitel’nyh peremennyh [Algorithm of the additional variables method]. Vestnik SPbGU. Serija 10, Prikladnaja matematika. Informatika. Processy upravlenija, 2012, iss. 2, pp. 3–12. (in Russian)
  4. Duboshin G.N. Nebesnaja mehanika. Osnovnye zadachi i metody [Celestial mechanics. Main tasks and methods]. 3rd ed. Moscow, Nauka Publ., 1975, 800 p. (in Russian)
  5. Babadzhanjanz L.K., Bregman A.M., Bregman K.M., Kasikova P., Petrosyan L.A. Polnye sistemy uravnenij dlya zadachi dvuh tel [Systems of total equations for the two body problem] Texnicheskie nauki — ot teorii k praktike: sb. st. po mater. LXI mezhdunar. nauch.-prakt. konf.. Novosibirsk, SibAK Publ., 2016, no. 8 (56), pp. 13–21. (in Russian)
  6. Holshevnikov K.V., Titov V.B. Zadacha dvuh tel [The two-body problem]. St. Petersburg, St. Petersburg St. Univ. Publ., 2007, 180 p. (in Russian)
  7. Babadzanjanz L.K., Pototskaya I.Yu, Pupysheva Yu.Yu. Estimates for Taylor series method to linear total systems of PDEs. Vestnik SPbGU. Serija 10, Prikladnaja matematika. Informatika. Processy upravlenija, 2020, vol. 16, iss. 1, pp. 3–11. https://doi.org/10.21638/11701/SPBU10.2020.203
  8. Babadzanjanz L.K., Pototskaya I.Yu, Pupysheva Yu.Yu. Estimates in the Taylor series method for polynomial total systems of PDEs. Vestnik SPbGU. Serija 10, Prikladnaja matematika. Informatika. Processy upravlenija, 2021, vol. 17, iss. 1, pp. 27–39. https://doi.org/10.21638/11701/SPBU10.2021.103
  9. Yang J., Koutsawa Y., Potier-Ferry M., Hu H. Changing variables in Taylor series with applications to PDEs. Engineering Analysis with Boundary Elements, 2020, vol. 112, pp. 77–86. https://doi.org/10.1016/j.enganabound.2019.12.009
  10. Lombardo U., Giuliani G., Niu Y. Two-Body Problem: Bound States. Quantum Mechanics: From Atoms to Nuclei. Springer Nature Singapore, 2024, pp. 119–131.
  11. Miletics E., Moln´arka G. Taylor series method with numerical derivatives for initial value problems. J. Comput. Methods in Sciences and Engineering, 2004, vol. 4, no. 1–2, pp. 105-–114.
  12. Abad A., Calvo M., Docobo J. A., Elipe A. On the Orbital Elements of the Twobody Problem with Slowly Decreasing Mass: The Gylden–Mestchersky Cases. The Astronomical J., 2020, vol. 160, no. 5. https://doi.org/10.3847/1538-3881/abb4e4
  13. Rodriguez M., Barrio R. Reducing rounding errors and achieving Brouwer’s law with Taylor series method. Appl. Numer. Math., 2012, vol. 62, no. 8, pp. 1014–1024. https://doi.org/10.1016/j.apnum.2012.03.008
  14. Alesova I.M., Babadzanjanz L.K., Bregman A.M., Bregman K.M., Pototskaya I.Yu., Pupysheva Yu.Yu. and Saakyan A.T. Schemes of fast evaluation of multivariate monomials for speeding up numerical integration of equations in dynamics. AIP Conference Proceedings, 1978, 100008 (2018). https://doi.org/10.1063/1.5043752
  15. Carothers D.C., Parker G.E., Sochacki J.S., Warne P.G. Some properties of solutions to polynomial systems of differential equations. Electron. J. Diff. Eqns., 2005, no. 40, pp. 1–17.

Full text (russian)