«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2022. Vol 39

Displacement Field Construction Based on a Discrete Model in Image Processing Problems

Author(s)
Elena D. Kotina1, Ekaterina B. Leonova1, Viktor A. Ploskikh1

1Saint-Petersburg State University, Saint-Petersburg, Russian Federation, e.kotina@spbu.ru

Abstract
The problem of a displacement field calculation for an image sequence based on a discrete model is being solved. Algorithms for velocity field (displacement field) construction are in demand in various image processing tasks. These methods are used in motion detection, object movement tracking, analysis of complex images, movement correction of medical diagnostic images in nuclear medicine, radiology, etc. An optimization approach to the displacement field construction based on a discrete model is developed in the paper. The approach explores the possibility of taking into account the brightness change along the trajectories of the system. A linear model is considered. Directed optimization methods based on the analytical representation of the functional gradient are constructed to search for unknown parameters. The algorithm for displacement field construction with image partitioning into regions (neighborhoods) is proposed. This algorithm can be used to process a variety of image sequences. The results of the algorithm operation on test radionuclide images are presented.
About the Authors

Elena D. Kotina, Dr. Sci. (Phys.–Math.), Prof., St. Petersburg, State University, St. Petersburg,199034, Russian Federation,e.kotina@spbu.ru

Ekaterina B. Leonova, Postgraduate, St. Petersburg State University, St. Petersburg, 199034, Russian Federation, st062324@student.spbu.ru

Viktor A. Ploskikh, Cand. Sci. (Phys.–Math.), Assoc. Prof., St. Petersburg State University, St. Petersburg, 199034, Russian Federation, v.ploskikh@spbu.ru

For citation
Kotina E. D., Leonova E. B., Ploskikh V. A. Displacement Field Construction Based on a Discrete Model in Image Processing Problems. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 39, pp. 3–16. https://doi.org/10.26516/1997-7670.2022.39.3
Keywords
discrete systems, displacement field, functional variation, optimization, image processing
UDC
519.6
MSC
65K10
DOI
https://doi.org/10.26516/1997-7670.2022.39.3
References
  1. Bazhanov P.V., Kotina E.D. Ob optimizacionnom podhode pri postroenii polya skorostej v zadachah obrabotki izobrazhenij [On the optimization approach in constructing the velocity field in image processing problems] The Bulletin of Irkutsk State University. Series Mathematics, 2018, vol. 24, pp. 3–11. (in Russian)
  2. Kotina E.D., Leonova E.B., Ploskih V.A. Obrabotka radionuklidnyh izobrazhenij s ispol’zovaniem diskretnyh sistem [Radionuclide images processing with the use of discrete systems] Bulletin of St. Petersburg University. Applied mathematics. Informatics. Control processes, 2019, vol. 15, no. 4, pp. 543–553. (in Russian)
  3. Kotina E.D., Ovsyannikov D.A. Matematicheskaya model sovmestnoj optimizacii programmnogo i vozmushchennyh dvizhenij v diskretnyh sistemah [Mathematical model of joint optimization of programmed and perturbed motions in discrete systems] Bulletin of St. Petersburg University. Applied mathematics. Informatics. Control processes, 2021, vol. 17, no. 2, pp. 213–224. https://doi.org/10.21638/11701/spbu10.2021.210 (in Russian)
  4. Ovsyannikov, D. A. Modelirovanie i optimizaciya dinamiki puchkov zaryazhennyh chastic [Modeling and optimization of the charged particle beams dynamics]. Leningrad, Publ. house of the Leningrad Univ., 1990. 312 p. (in Russian)
  5. Ovsyannikov D.A., Mizinceva M.A., Balabanov M.Yu., Durkin A.P., Edamenko N.S., Kotina E.D., Ovsyannikov A.D. Optimizaciya dinamiki puchkov traektorij c ispol’zovaniem gladkih i negladkih funkcionalov. Chast’ 1 [Optimization of dynamics of trajectory bundles using smooth and nonsmooth functionals. Part 1] Bulletin of St. Petersburg University. Applied mathematics. Informatics. Control processes, 2020, vol. 16, no. 1, pp. 73–84. (in Russian) https://doi.org/10.21638/11702/spbu10.2020.107
  6. Srochko V.A., Aksenyushkina E.V. Parametrizaciya nekotoryh zadach upravleniya linejnymi sistemami. [Parameterization of some control problems by linear systems] The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 30, pp. 83–98. (in Russian)
  7. Srochko V.A., Aksenyushkina E.V., Antonik V.G. Reshenie linejno-kvadratichnoj zadachi optimal’nogo upravleniya na osnove konechnomernyh modelej [Resolution of a linear-quadratic optimal control problem based on finite-dimensional models] The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 37, pp. 3– 16. (in Russian) https://doi.org/10.26516/1997-7670.2021.37.3
  8. Anandan P.A. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 1989, vol. 2, pp. 283–310.
  9. Arguchintsev A., Kedrin V., Sinitsyn A. Numerical solution of the problem of recovering parameters for the limit model of an uninsulated vacuum plane diode. Cybernetics and Physics, 2019, vol. 8, no. 3, pp. 98–105.
  10. Barron J., Fleet D. Performance of optical flow techniques. International Journal of Computer Vision, 1994, vol. 12, pp. 43–77.
  11. Bazhanov P.V., Kotina E.D., Ovsyannikov D.A., Ploskikh V.A. Optimization algorithm of the velocity field determining in image processing. Cybernetics and Physics, 2018, vol. 7, no. 4, pp. 174–181.
  12. Black M.J., Anandan P.A. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. CVIU, 1996, vol. 63, pp. 75–104.
  13. Bruhn A., Weickert J., Schnorr C. Lucas Kanade Meets Horn Schunck: Combining Local and Global Optic Flow Methods. International Journal of Computer Vision, 2005, vol. 6, no. 3, pp. 211–231.
  14. Fleet D., Weiss J. Optical Flow Estimation. Mathematical Models in Computer Vision: The Handbook, Chapter 15. Springer, 2005, pp. 239–258.
  15. Hien N.L.H., Van Huy L., Van Hieu N. Artwork style transfer model using deep learning approach. Cybernetics and Physics, 2021, vol. 10, no. 3, pp. 127–137.
  16. Horn B.K.P., Schunck B.G. Determining optical flow. Artificial intelligence, 1981, vol. 17, no. 11, pp. 185–203.
  17. Khoa Phan T.D. A multi-stage algorithm for image denoising based on pca and adaptive tv-regularization. Cybernetics and Physics, 2021, vol. 10, no. 3, pp. 162–170.
  18. Kotina E.D. Data processing in radionuclide studies. Problems of Atomic Science and Technology, 2012, no. 3, pp. 195–198.
  19. Kotina E.D., Latypov V.N., Ploskikh V.A. Universal System for Tomographic Reconstruction on GPUs. Problems of Atomic Science and Technology, 2013, vol. 88, no. 6, pp. 175–178.
  20. Lucas B.D., Kanade T. An Iterative image registration technique with an Application to Stereo Vision. Proceedings of Imaging Understanding Workshop, 1981, pp. 121–130.
  21. Ovsyannikov D.A., Kotina E.D. Determination of velocity field by given density distribution of charged particles. Problems of Atomic Science and Technology, 2012, vol. no. 3, pp. 122–125.
  22. Ovsyannikov D.A., Kotina E.D., Shirokolobov A.Y. Mathematical methods of motion correction in radionuclide studies. Problems of Atomic Science and Technology, 2013, vol. 88, no. 6, pp. 137–140.
  23. Papenberg N., Bruhn A., Brox T. et al. Highly Accurate Optic Flow Computation with Theoretically Justified Warping. International Journal of Computer Vision, 2006, vol. 67, no. 2, pp. 141–158.
  24. Ploskikh V.A., Kotina E.D. Challenges of gated myocardial perfusion SPECT processing. Cybernetics and Physics, 2021, vol. 10, no. 3, pp. 171–177.

Full text (english)