«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2018. Vol. 24

On the Numerical Range and Numerical Radius of the Volterra Operator

Author(s)
L. Khadkhuu, D. Tsedenbayar
Abstract

In this paper, we investigated the numerical range and the numerical radius of the classical Volterra operator on the complex space L2[0, 1]. In particular, we determined the numerical range, the numerical radius of real and imaginary part of the Volterra operator.

About the Authors

Lkhamjav Khadkhuu, Cand. Sci. (Phys.–Math.), Assoc. Prof., Department of Mathematics, National University of Mongolia, P. O. Box 46/145, National University Street-3, Ulaanbaatar, Mongolia, e-mail: hadhuul@yahoo.com

Dashdondog Tsedenbayar, Dr. Sci. (Phys.–Math.), Prof., Department of Mathematics, Mongolian University of Science and Technology, P. O. Box 46/520, Baga toiruu -6, Sukhbaatar district, Ulaanbaatar-14191, Mongolia, e-mail: cdnbr@yahoo.com

For citation:
Khadkhuu L., Tsedenbayar D. On the Numerical Range and Numerical Radius of the Volterra Operator. The Bulletin of Irkutsk State University. Series Mathematics, 2018, vol. 24, pp. 102-108. https://doi.org/10.26516/1997-7670.2018.24.102
Keywords
Volterra operator, numerical range, numerical radius
UDC
References

1. Davies E. Brian. Linear Operators and Their Spectra. Cambridge Studies in Advanced Mathematics, 2007, no. 106. https://doi.org/10.1017/CBO9780511618864

2. Gustafson K.E. and Rao D.K.M. Numerical Range. Springer-Verlag New York, Inc., 1997.

3. Gurdal M., Garayev M.T. and Saltan S. Some concrete operators and their properties. Turkhish Journal of Mathematics, 2015, vol. 39, pp. 970-989. https://doi.org/10.3906/mat-1502-48

4. Halmos P.R. A Hilbert Space Problem Book. Springer-Verlag New York Inc., 1982. https://doi.org/10.1007/978-1-4684-9330-6

5. Khadkhuu L., Tsedenbayar D. A note about Volterra operator. Mathematica Slovaca, 2017, Accepted.

6. Khadkhuu L., Tsedenbayar D. Some norm one functions of the Volterra operator. Mathematica Slovaca, 2015, vol. 65, Issue 6, pp. 1505–1508. https://doi.org/10.1515/ms-2015-0102

7. Khadkhuu L., Tsedenbayar D., Zem´anek J. Operator Theory: Advanced and Applications, 2015, vol. 250, pp. 281-285.

8. Tsedenbayar D. On the power boundedness of certain Volterra operator pencils, Studia Mathematica, 2003, no. 156, pp. 59-66. https://doi.org/10.4064/sm156-1-4


Full text (english)