«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 54

Partial Algebras of Formulas Under Generalized Superpositions

Author(s)

T. Kumduang1,  K. Wattanatripop2

Rajamangala University of Technology Rattanakosin, Nakhon Pathom, Thailand

Rajamangala University of Technology Lanna, Chiang Mai, Thailand

Abstract
Formulas which are tools for describing algebraic systems are formal expressions arising from terms, relation symbols, and logical connectives. Under composition of the generalized superposition operation, the set of all terms forms a unitary superassociative algebra. This paper deals with construction of the partial generalized superposition on the set of all terms and formulas satisfying the superassociativity as a weak identity. Partial binary operations induced by such partial generalized superpositions are given and the fact that these operations are weak associative are proved.
About the Authors

T. Kumduang, Ph. D. (Math.), Lecturer, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand, thodsaporn.kum@rmutr.ac.th

K. Wattanatripop, Ph. D. (Math.), Lecturer, Rajamangala University of Technology Lanna, Chiang Mai, 50300, Thailand, khwancheewa.wat@rmutl.ac.th

For citation
Kumduang T., Wattanatripop K. Partial Algebras of Formulas Under Generalized Superpositions. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 54, pp. 160–175. https://doi.org/10.26516/1997-7670.2025.54.160
Keywords
partial algebra, formula, term, superassociativity, partial semigroup, weak
UDC
512.577
MSC
08A02, 08A05, 08A70, 20N02, 20N15
DOI
https://doi.org/10.26516/1997-7670.2025.54.160
References
  1. Borlido C., McLean B. Difference–restriction algebras of partial functions: axiomatisations and representations. Algebra Univers., 2022, vol. 83, art. no. 24. 
  2. Busaman S. Unitary Menger algebra of C-quantifier free formulas of type (𝜏𝑛, 2). Asian-Eur. J. Math., 2021, vol. 14, art. no. 150050. 
  3. Chajda I., L¨anger I. Extensions and congruences of partial lattices. Mathematica Slovaca, 2023, vol. 73, pp. 289–304.
  4. Denecke K. Partial clones of terms: an algebraic approach to trees, formulas and languages. Eliva Press, Chisin˘au, 2024. 
  5. Denecke K. The partial clone of linear formulas. Sib. Math J., 2019, vol. 60, pp. 572–584. 
  6. Denecke K., Hounnon H. Partial Menger algebras of terms. Asian-Eur. J. Math., 2021, vol. 14, art. no. 2150092. 
  7. Denecke K., Jampachon P. Regular elements and Green’s relations in Menger algebras of terms. Discussiones Mathematicae, General Algebra and Applications, 2006, vol. 26, pp. 85–109. 
  8. Dudek W.A., Trokhimenko V.S. Menger algebras of associative and selfdistributive 𝑛-ary operations. Quasigroups Relat. Syst., 2018, vol. 26, pp. 45–52.
  9. East J., Ruˇskuc N. Congruence lattices of ideals in categories and (partial) semigroups. Memoirs of the American Mathematical Society, 2023, USA. 
  10. Joomwong J., Phusanga D. On Green’s relations which are related to an algebraic system of type ((𝑛); (𝑚)). Southeast Asian Bull. Math., 2021, vol. 45, pp. 897–904. 
  11. Kulpeshov B.Sh., Sudoplatov S.V. Algebras of binary formulas for ℵ0-categorical weakly circularly minimal theories: monotonic case. Bulletin of the Karaganda University. Mathematics series, 2024, vol. 113, pp. 112–127. 
  12. Markhabatov N.D., Sudoplatov S.V. Pseudofinite formulae. Lobachevskii J. Math., 2022, vol. 43, pp. 3583–3590. 
  13. Sudoplatov S.V. On generic structures preserving elementary equivalence and elementary embeddability. Bulletin of the Karaganda University. Mathematics series, 2018, vol. 89, pp. 70–76. 
  14. Kumduang T., Sriwongsa S. Superassociative structures of terms and formulas defined by transformations preserving a partition. Commun. Algebra., 2023, vol. 51, pp. 3203–3220. 
  15. Litavrin A.V., Moiseenkova T.V. On partial groupoids associated with the composition of multilayer feedforward neural networks. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 50, pp. 101–115. 
  16. Maltsev A.I. Algebraic systems. Berlin, Germany, Akademie-Verlag, 1973. 
  17. Movsisyan Y. On functional equations and distributive second order formulae with specialized quantifiers. Algebra Discrete Math., 2018, vol. 25, pp. 269–285. 
  18. Phusanga D., Joomwong J., Jino S., Koppitz J. All idempotent and regular elements in the monoid of generalized hypersubstitutions for algebraic systems of type (2; 2). Asian-Eur. J. Math., 2021, vol. 14, art. no. 2150015.
  19. Phusanga D., Koppitz J. Some varieties of algebraic systems of type ((𝑛),(𝑚)). Asian-Eur. J. Math., 2019, vol. 12, art. no. 1950005. 
  20. Puninagool W., Leeratanavalee S. Complexity of terms, superpositions, and generalized hypersubstitutions. Comput. Math. Appl., 2010, vol. 59, pp. 1038–1045. 
  21. Wattanatripop K., Changphas T. Clones of terms of a fixed variable. Mathematics, 2020, vol. 8, art. no. 260. 
  22. Wattanatripop K., Kumduang T. The partial clone of completely expanded terms. Asian-Eur. J. Math., 2024, vol. 17, art. no. 2450063.

Full text (english)