«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 52

Algebras of Binary Formulas for Weakly Circularly Minimal Theories: Monotonic-to-left Case

Author(s)
Aizhan B. Altayeva1, Beibut Sh. Kulpeshov2,3

1International Information Technology University, Alma-Ata, Kazakhstan

2Institute of Mathematics and Mathematical Modeling, Alma-Ata, Kazakhstan

3Kazakh-British Technical University, Alma-Ata, Kazakhstan

Abstract

This article concerns the notion of weak circular minimality being a variant of o-minimality for circularly ordered structures. Algebras of binary isolating formulas are studied for ℵ0-categorical 1-transitive non-primitive weakly circularly minimal theories of convexity rank greater than 1 with a trivial definable closure having a non-trivial monotonic-to-left function acting on the universe of a structure. On the basis of the study, the authors present a description of these algebras. It is shown that for this case there exist only non-commutative algebras. A strict m-deterministicity of such algebras for some natural number m is also established.

About the Authors

Aizhan B. Altayeva, PhD in Mathematics, International Information Technology University, Alma-Ata, 050040, Kazakhstan, vip.altayeva@mail.ru

Beibut Sh. Kulpeshov, Dr. Sci. (Phys.-Math.), Prof., Institute of Mathematics and Mathematical Modeling, Alma-Ata, 050010, Kazakhstan, kulpesh@mail.ru; Kazakh British Technical University, Alma-Ata, 050000, Kazakhstan, b.kulpeshov@kbtu.kz

For citation
Altayeva A.B., Kulpeshov B.Sh. Algebras of Binary Formulas for Weakly Circularly Minimal Theories: Monotonic-to-left Case. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 52, pp. 120–136.

https://doi.org/10.26516/1997-7670.2025.52.120

Keywords

algebra of binary formulas, ℵ0-categorical theory, weak circular minimality, circularly ordered structure, convexity rank

UDC
510.67
MSC
03C64, 03C07
DOI
https://doi.org/10.26516/1997-7670.2025.52.120
References
  1. Altayeva A.B., Kulpeshov B.Sh., Sudoplatov S.V. Algebras of distributions of binary isolating formulas for almost ω-categorical weakly ominimal theories. Algebra and Logic, 2021, vol. 60, no. 4, pp. 241–262. https://doi.org/10.33048/alglog.2021.60.401 (in Russian)
  2. Altayeva A.B., Kulpeshov B.Sh. Almost binarity of countably categorical weakly circularly minimal structures. Mathematical Notes, 2021, vol. 110, no. 6, pp. 813– 829. https://doi.org/10.1134/S0001434621110195
  3. Baikalova K.A., Emelyanov D.Yu., Kulpeshov B.Sh., Palyutin E.A., Sudoplatov S.V. On algebras of distributions of binary isolating formulas for theories of abelian groups and their ordered enrichments. Russian Mathematics, 2018, vol. 62, no. 4, pp. 1–12. https://doi.org/10.3103/S1066369X18040011
  4. Bhattacharjee M., Macpherson H.D., Moller R.G., Neumann P.M., Notes on Infinite Permutation Groups. Lecture Notes in Mathematics 1698. Springer, 1998, 202 p.
  5. Cameron P.J. Orbits of permutation groups on unordered sets, II. Journal of the London Mathematical Society, 1981, vol. 2, pp. 249–264.
  6. Droste M., Giraudet M., Macpherson H.D., Sauer N. Set-homogeneous graphs. Journal of Combinatorial Theory Series B, 1994, vol. 62, no. 2, pp. 63–95.
  7. Emelyanov D.Yu., Kulpeshov B.Sh., Sudoplatov S.V. Algebras of distributions for binary formulas in countably categorical weakly o-minimal structures. Algebra and Logic, 2017, vol. 56, no. 1, pp. 13–36. https://doi.org/10.1007/s10469-017-9424-y
  8. Emelyanov D.Yu., Kulpeshov B.Sh., Sudoplatov S.V. Algebras of distributions of binary isolating formulas for quite o-minimal theories. Algebra and Logic, 2019, vol. 57, no. 6, pp. 429–444. https://doi.org/10.1007/s10469-019-09515-5
  9. Emelyanov D.Yu., Kulpeshov B.Sh., Sudoplatov S.V., Algebras of binary formulas for compositions of theories. Algebra and Logic, 2020, vol. 59, no. 4, pp. 295–312. https://doi.org/10.1007/s10469-020-09602-y
  10. Kulpeshov B.Sh., Sudoplatov S.V. Algebras of binary formulas for weakly circularly minimal theories with non-trivial definable closure. Lobachevskii Journal of Mathematics, 2022, vol. 43, no. 12, pp. 3532–3540. https://doi.org/10.1134/S199508022215015X
  11. Kulpeshov B.Sh. Algebras of binary formulas for ℵ0-categorical weakly circularly minimal theories: piecewise monotonic case. Siberian Electronic Mathematical Reports, 2023, vol. 20, no. 2, pp. 824–832. https://doi.org/10.33048/semi.2023.20.049
  12. Kulpeshov B.Sh., Sudoplatov S.V. Algebras of binary formulas for ℵ0- categorical weakly circularly minimal theories: monotonic case. Bulletin of the Karaganda University. Mathematics series, 2024, no. 1 (113), pp. 112–127. https://doi.org/10.31489/2024M1/112-127
  13. Kulpeshov B.Sh. Algebras of binary formulas for weakly circularly minimal theories with trivial definable closure. Sib. Math. J., 2024, vol. 65, no. 2., pp. 316–327. https://doi.org/10.1134/S0037446624020071
  14. Kulpeshov B.Sh., Macpherson H.D. Minimality conditions on circularly ordered structures. Mathematical Logic Quarterly, 2005, vol. 51, no. 4., pp. 377–399. https://doi.org/10.1002/malq.200410040
  15. Kulpeshov B.Sh. On ℵ0-categorical weakly circularly minimal structures. Mathematical Logic Quarterly, 2006, vol. 52, no. 6., pp. 555–574. DOI 10.1002/malq.200610014
  16. Kulpeshov B.Sh. Definable functions in the ℵ0-categorical weakly circularly minimal structures. Siberian Mathematical Journal, 2009, vol. 50, no. 2., pp. 356–379. (in Russian)
  17. Kulpeshov B.Sh. On indiscernibility of a set in circularly ordered structures. Siberian Electronic Mathematical Reports, 2015, vol. 12, pp. 255–266. https://doi.org/10.17377/semi.2015.12.021 (in Russian)
  18. Kulpeshov B.Sh., Verbovskiy V.V. On weakly circularly minimal groups. Mathematical Logic Quarterly, 2015, vol. 61, no. 1-2., pp. 82–90. https://doi.org/10.1002/malq.201300076
  19. Kulpeshov B.Sh., Altayeva A.B. Binary formulas in countably categorical weakly circularly minimal structures. Algebra and Logic, 2016, vol. 55, no. 3., pp. 341–241. https://doi.org/10.1007/s10469-016-9391-8
  20. Kulpeshov B.Sh. On almost binarity in weakly circularly minimal structures. Eurasian Mathematical Journal, 2016, vol. 7, no. 2., pp. 38–49.
  21. Kulpeshov B.Sh., Altayeva A.B. Equivalence-generating formulas in weakly circuarly minimal structures. Reports of National Academy of sciences of the Republic of Kazakhstan, 2014, no. 2, pp. 5–10.
  22. Kulpeshov B.Sh. Weakly o-minimal structures and some of their properties. The Journal of Symbolic Logic, 1998, vol. 63, no. 4., pp. 1511–1528. https://doi.org/10.2307/2586664
  23. Kulpeshov B.Sh. A criterion for binarity of almost ω-categorical weakly o-minimal theories. Siberian Mathematical Journal, 2021, vol. 62, no. 2., pp. 1063–1075. https://doi.org/10.1134/S0037446621060082
  24. Macpherson H.D., Marker D., Steinhorn C. Weakly o-minimal structures and real closed fields. Transactions of the American Mathematical Society, 2000, vol. 352, no. 12., pp. 5435–5483.
  25. Shulepov I.V., Sudoplatov S.V. Algebras of distributions for isolating formulas of a complete theory. Siberian Electronic Mathematical Reports, 2014, vol. 11, pp. 380–407.
  26. Sudoplatov S.V. Classification of countable models of complete theories. Novosibirsk, NSTU Publ., 2018. (in Russian)

Full text (english)