«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2024. Vol 49

The Satisfiability Problem in Linear Multi-agent Knowledge Logic Based on N

Author(s)
Nikita A. Protsenko1, Vladimir V. Rybakov1

1Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract

In this paper we explore the linear logic of multi-agent knowledge using multivalued models. The logic of the language contains the unary operators Kj — j — the agent knows, ULKG — unstable local knowledge, EG — stable local knowledge in the group, and the binary logical operator APG - the majority opinion. We will show some examples that demonstrate the diversity of this language and its capabilities. Technically we prove decidability of satisfiability problem in the resulting models for our multi-agent logic, develop verification technique and provide some examples.

About the Authors

Nikita A. Protsenko, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation, nikitaprotsenko2003@gmail.com

Vladimir V. Rybakov, Dr. Sci. (Phys.–Math.), Prof., Siberian Federal University, Krasnoyarsk, 660041, Russian Federation, Vladimir Rybakov@mail.ru

For citation

Protsenko N. A., Rybakov V. V. The Satisfiability Problem in Linear Multi-agent Knowledge Logic Based on N. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 49, pp. 124–134.

https://doi.org/10.26516/1997-7670.2024.49.124

Keywords
modal logic, temporal logic, common knowledge, deciding algorithms, multiagent logic
UDC
510.665, 510.643
MSC
03B45, 03H05
DOI
https://doi.org/10.26516/1997-7670.2024.49.124
References
  1. Babenyshev S., Rybakov V. Logic of Plausibility for Discovery in Multi-agent Environment Deciding Algorithms. KES (3), Lecture Notes in Computer Science, 2008, vol. 5179/2008, pp. 210–217.
  2. Babenyshev S., Rybakov V. Decidability of Hybrid Logic with Local Common Knowledge Based on Linear Temporal Logic LTL. CiE 2008, Lecture Notes in Computer Science, 2008, vol. 5028/2008, pp. 32–41.
  3. Barwise J. Three views of common knowledge. In Proceedings of the 2nd conference on Theoretical aspects of reasoning about knowledge (TARK ’88), 1988, pp. 365–379. https://dl.acm.org/doi/10.5555/1029718.1029753
  4. Belardinelli F., Lomuscio A. Interactions between Knowledge and Time in a FirstOrder Logic for Multi-Agent Systems: Completeness Results. Journal of Artificial Intelligence Research, 2012, vol. 45, pp. 1–45. https://doi.org/10.1613/jair.3547
  5. Ding Y., Liu J., Wang Y. Someone knows that local reasoning on hypergraphs is a weakly aggregative modal logic. Synthese, 2023, vol. 201, 46. https://doi.org/10.1007/s11229-022-04032-y
  6. Fagin R., Halpern J., Vardi M. A Model-Theoretic Analysis of Knowledge: Preliminary Report. IEEE Annual Symposium on Foundations of Computer Science, 1984, pp. 268–278. https://doi.org/10.1109/SFCS.1984.715925
  7. Fagin R., Halpern J., Moses Y., Vardi M. Reasoning About Knowledge. Cambridge, Massachusetts, The MIT Press, 1995, 477 p.
  8. McLean D., Rybakov V. Multi-Agent Temporary Logic T S4 UKn Based at Nonlinear Timeand Imitating Uncertainty via Agents Interaction. Artificial Intelligence and Soft Computing, 2013, pp. 375–384.
  9. Moor M.A., Rybakov V.V. Many-valued multi-modal logics, satisfiability problem. Siberian Electronic Mathematical Reports, 2018, vol. 15, pp. 829–838. https://doi.org/10.17377/semi.2018.15.070_134
  10. Pnueli A. The temporal logic of programs. Proceedings of the 18th Annual Symposium on Foundations of Computer Science (FOCS), 1977, pp. 46–57. https://doi.org/10.1109/SFCS.1977.32
  11. Prior A. Time and modality. Oxford, Oxford University Press, 1957, 148 p. Zbl 0079.00606
  12. Protsenko N.A., Rybakov V.V., Rimatskiy V.V. Satisfiability Problem in Interval FP-logic. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 44, pp. 98–107. https://doi.org/10.26516/1997-7670.2023.44.98
  13. Rybakov V., Babenyshev S. Multi-agent logic with distances based on linear temporal frames. Artifical Intelligence and Soft Computing, 2010, Conference Proceedings, Springer, (2010), pp. 337–344.
  14. Rybakov V.V. Non-transitive linear temporal logic and logical knowledge operations. J. Logic and Computation, Oxford Press, 2016, vol. 26, no. 3, pp. 945–958. https://doi.org/10.1093/logcom/exv016
  15. Rybakov V.V. Multiagent Temporal Logics with Multivaluations. Siberian Mathematical Journal, 2018, vol. 59, iss. 4, pp 710–720. https://doi.org/10.1134/S0037446618040134
  16. Rybakov V. Refined common knowledge logics or logics of common information. Arch. Math. Logic, 2003, vol. 42, pp. 179–200. https://doi.org/10.1007/s001530100134
  17. Wooldridge M., Lomuscio. A. Multi-Agent VSK Logic. Proceedings of the Seventh European Workshop on Logics in Artificial Intelligence (JELIAI-2000), SpringerVerlag, 2000.

Full text (english)