«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2024. Vol 48

Variations of Rigidity for Ordered Theories

Author(s)
Beibut Sh. Kulpeshov1,2,3, Sergey V. Sudoplatov3,4

1Kazakh British Technical University, Almaty, Kazakhstan

2Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

3Novosibirsk State Technical University, Novosibirsk, Russian Federation

4Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract

One of the important characteristics of structures is degrees of semantic and syntactic rigidity, as well as indices of rigidity, showing how much the given structure differs from semantically rigid structures, i.e., structures with one-element automorphism groups, as well as syntactically rigid structures, i.e., structures covered by definable closure of the empty set. Issues of describing the degrees and indices of rigidity represents interest both in a general context and in relation to ordering theories and their models. In the given paper, we study possibilities for semantic and syntactic rigidity for ordered theories, i.e., the rigidity with respect to automorphism group and with respect to definable closure. We describe values for indices and degrees of semantic and syntactic rigidity for well-ordered sets, for discrete, dense, and mixed orders and for countable models of ℵ0-categorical weakly o-minimal theories. All possibilities for degrees of rigidity for countable linear orderings are described.

About the Authors

Beibut Sh. Kulpeshov, Dr. Sci. (Phys.-Math.), Prof., Kazakh British Technical University, Almaty, 050000, Kazakhstan, b.kulpeshov@kbtu.kz; Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan, kulpesh@mail.ru; Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation, kulpeshov@corp.nstu.ru

Sergey V. Sudoplatov, Dr. Sci. (Phys.–Math.), Prof., Sobolev Institute of Mathematics, Novosibirsk, 630090, Russian Federation, sudoplat@math.nsc.ru; Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation, sudoplatov@corp.nstu.ru

For citation

Kulpeshov B. Sh., Sudoplatov S. V. Variations of Rigidity for Ordered Theories. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 48, pp. 129–144. https://doi.org/10.26516/1997-7670.2024.48.129

Keywords
definable closure, semantic rigidity, syntactic rigidity, degree of rigidity, ordered theory
UDC
510.67
MSC
03C50, 03C30, 03C64
DOI
https://doi.org/10.26516/1997-7670.2024.48.129
References
  1. Baizhanov B.S. Expansion of a model of a weakly o-minimal theory by a family of unary predicates. The Journal of Symbolic Logic, 2001, vol. 66, pp. 1382–1414.https://doi.org/10.2307/2695114
  2. Cameron P.J. Groups of order-automorphisms of the rationals with prescribed scale type. Journal of Mathematical Psychology, 1989, vol. 33, no. 2, pp. 163–171. https://doi.org/10.1016/0022-2496(89)90028-X
  3. Darji U.B., Elekes M., Kalina K., Kiss V., Vidny´anszky Z. The structure of random automorphisms of the rational numbers. Fundamenta Mathematicae, 2020, vol. 250, pp. 1–20. https://doi.org/10.4064/fm618-9-2019
  4. Ershov Yu.L., Palyutin E.A. Mathematical Logic, Moscow, Fizmatlit, 2011. 356 p. [in Russian]
  5. Glass A.M.W. Ordered permutation groups, Volume 55 of London Mathematical Society Lecture Note Series, Cambridge, New York, Cambridge University Press, 1981, 266 p.
  6. Hodges W. Model Theory, Cambridge, Cambridge University Press, 1993, 772 p.
  7. Kulpeshov B.Sh., Sudoplatov S.V. 𝑃-combinations of ordered theories. Lobachevskii Journal of Mathematics, 2020, vol. 41, no. 2, pp. 227–237. https://doi.org/10.1134/S1995080220020110
  8. Kuratowski K., Mostowski A. Set Theory, Studies in logic and the foundations of mathematics. Vol. 38, Amsterdam, North-Holland, 1968, 424 p.
  9. Macpherson H.D., Marker D., Steinhorn C. Weakly o-minimal structures and real closed fields. Transactions of the American Mathematical Society, 2000, vol. 352, no. 12, pp. 5435–5483.
  10. Marker D. Model Theory: An Introduction, New York, Springer-Verlag, 2002. Graduate texts in Mathematics, vol. 217, 342 p.
  11. Pillay A. Geometric Stability Theory. Oxford, Clarendon Press, 1996, 361 p.
  12. Rosenstein J.G. ℵ0-categoricity of linear orderings. Fundamenta Mathematicae, 1969, vol. 64, pp. 1–5.
  13. Shelah S. Classification theory and the number of non-isomorphic models. Amsterdam, North-Holland, 1990, 705 p.
  14. Sudoplatov S.V. Algebraic closures and their variations. arXiv:2307.12536 [math.LO], 2023, 16 p.
  15. Sudoplatov S.V. Variations of rigidity. Bulletin of Irkutsk State University, Series Mathematics, 2024, vol. 47, pp. 119–136. https://doi.org/10.26516/1997-7670.2024.47.119
  16. Tent K., Ziegler M. A Course in Model Theory, Cambridge, Cambridge University Press, 2012, 248 p.
  17. Truss J.K. Generic automorphisms of homogeneous structures. Proceedings of the London Mathematical Society, 1992, vol. 65, no. 1, pp. 121–141. https://doi.org/10.1112/plms/s3-65.1.121

Full text (english)