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Awunortarusi. YTBEpXK/Ia€TCsI, YTO OJHUMU U3 BAYKHBIX XaPAKTEPUCTUK CTPYKTYD SIBJIS-
IOTCSI CTEIIEHN CEMaHTUYECKONU U CUHTAKCUYECKOMH »KECTKOCTH, a TaKrKe MHJIEKCHI 2KECTKO-
CTH, ITOKA3bIBAIOIINE HACKOJIBKO JAHHAS CTPYKTYPa OTJIMYAETCH OT CEMAHTUYECKU YKECT-
KO# CTPYKTYPBI, T.€. CTPYKTYPBI C OJTHO3JIEMEHTHON I'DYIIIOi aBTOMOP(MU3IMOB, a TaKXKe
OT CHHTAKCUYECKHU XKECTKOH CTPYKTYDBI, T. €. CTPYKTYPbl, HAKPBIBAEMOM OITpeIeINMbIM
3aMbIKAHUEM IIYCTOIO MHOXKECTBA. BOIPOCHI ONUCaHNs CTENEeHel U MHIEKCOB »KECTKOCTU
MIPE/ICTABJISIOT UHTEPEC KAK B OOIIEM KOHTEKCTE, TaK U MPUMEHUTEJHHO K YIOPSII09eH-
HBIM TEOPUAM U UX MOozessaM. VI3yueHbl BO3MOXKHOCTH CEMaHTUYIECKON U CUHTAKCUIECKON
2KECTKOCTHU yIOPSJOYEHHBIX TEOPHH, T. €. JKECTKOCTH 110 OTHOIIEHHIO K I'DYIIIIe aBTOMOD-
(bU3MOB U 110 OTHOIIIEHUIO K ONPEEIMMOMY 3aMblKaunio. OnucaHbl 3HAYEHUST WHIEKCOB
¥ CTeleHell CeMaHTHYECKON M CHMHTAKCUYECKON KECTKOCTH JJIsI BIIOJIHE yIIOPSIIOYEHHBIX
MHOZKECTB, JJI JUCKPETHBIX, IIJIOTHBIX U CMEIIaHHBIX MOPAIKOB, & TaKXKe JIJIs CIETHBIX
MoJiesieit No-KaTeropuaHbix cj1abo o-MUHUMAIbHBIX Teopuii. OTMeueHbl Bce BO3MOXKHOCTU
CTeIeHel »KECTKOCTH IS CYETHBIX JIMHEUHBIX OPSTKOB.

KiriroueBsble ciioBa: onpeaeImMoe 3aMbIKaHUE, CEMaHTHUYIECKad 2KECTKOCTh, CMHTaKCH1Ie-
CKasd 2KECTKOCTb, CTEII€Hb 2KECTKOCTHU, YIIOPsAJ0YeHHad TeOpus
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We continue to study variations of algebraic closures [14;15] considering
and describing semantic and syntactic possibilities for definable closures.
A general approach studying algebraic and definable characteristics, in
particular, variations of rigidity is applied for ordered theories.

We use the standard model-theoretic terminology [6;10;11;13; 16], no-
tions and notations in [14;15].

The paper is organized as follows. In Section 1, preliminary notions,
notations and assertions are collected, as well as values for indexes of
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rigidity for linearly ordered structures are described. In Section 2, values
of rigidity degrees for well-ordered sets and some their modifications are
described. In Sections 3 and 4, we describe rigidity characteristics for
discrete and dense orders, respectively. In Section 5, rigidity characteristics
for countable models of Ng-categorical weakly o-minimal theories are found.
In Section 6, rigidity characteristics for mixed, discrete-dense orders are
described, and Theorem describing possibilities for degrees of rigidity for
countable linear orderings is proved.

1. Preliminaries and indices of rigidity for ordered structures

Let L be a countable first-order language. Throughout the paper we
consider L-structures and their complete elementary theories, and assume
that L contains a symbol of binary relation <, which is interpreted as a
linear order in these structures.

Definition 1. [15]. For a set A in a structure M, M is called semantically
A-rigid or automorphically A-rigid if any A-automorphism f € Aut(M) is
identical. The structure M is called syntactically A-rigid if M = dcl(A).

Obviously, if M is an arbitrary structure, M is both semantically M-
rigid and syntactically M-rigid. Also, M is syntactically A-rigid for any
A C M with M \ dcl() C A. If M is an arbitrary infinite linearly ordered
structure, M is semantically A-rigid for any co-finite A C M.

A structure M is called V-semantically / V-syntactically n-rigid (re-
spectively, 3-semantically / 3-syntactically n-rigid), for n € w, if M is
semantically / syntactically A-rigid for any (some) A C M with |A| = n.

The least n such that M is @-semantically / @Q-syntactically n-rigid,
where @ € {V,3}, is called the Q-semantical / Q-syntactical degree of
rigidity, it is denoted by degri;em(M) and degfi?;ynt (M), respectively. Here
if a set A produces the value of @-semantical / Q-syntactical degree then
we say that A witnesses that degree. If such n does not exist we put
degg;em(/\/l) = oo and degg:ynt(/\/l) = 00, respectively.

Definition 2. [15]. For a set A in M and an expansion M4 of M
by constants in A, the least n such that My is @Q-semantically / Q-
syntactically n-rigid, where @ € {V,3}, is called the (Q, A)-semantical
/ (Q, A)-syntactical degree of rigidity, it is denoted by degQ_Sem(M) and

rig,A
Q-synt
degrig,A

oo and

(M), respectively. If such n does not exist we put deggg_;szm (M) =

deg "™ (M) = oo,

respectively.
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Any expansion M4 of M with degrlg (Ma) =0, for s € {sem,synt}, is
called a s-rigiditization or simply a rigiditization of M.

Following [15] for a structure M we denote by deg,(M) the tetrad

rig rig rig rig

(degﬂfsem(/w), deg =™ (M), deg=em (M), deg\’.‘synt(M)) .

Remark 1. If M is a structure of pure linear order then for the dual
structure M*, which is antiisomorphic to M, deg,(M*) = degy(M). It is
satisfied since the duality moves the automorphism group to the isomorphic
one, and it preserves the set of formulae witnessing the definable closure.

Fact 1. [15]. Let M be an arbitrary structure. Then
L. degg ™ (M) < deg)iZ™" (M).
2. deg,i,;”" (M) < degyi ™ (M)

3. deggy™ (M) < deg ™™ (M).

4. degrvl—gsem(M) < degv synt( )

5. degis™(M) = 0 iff degigsem(/\/l) =

rig

0.
6. deg Y™ (M) = 0 iff deg Y™ (M) = 0.

Definition 3. [15]. For a set A in a structure M the index of rigidity
of M over A, denoted by ind,iz(M/A), is the supremum of cardinalities
for the sets of solutions of algebraic types tp(a/A) for a € M. We put
indyig(M) = indyig(M/0). Here we assume that ind,ig(M) = 0 if M does
not have algebraic types tp(a) for a € M.

Proposition 1. For any linearly ordered structure M, either ind,ig(M) =
0 or indyjg(M) =1. If ) # A C M then indyg(M/A) = 1.

Proof. Let M be linearly ordered with the order <. Then any algebraic
type has a unique solution. Thus, either indyg(M) = 0, if M does not
have algebraic types, or inds (M) = 1, if these types exists. If § # A C M
then an algebraic type tp(a/A) exists, taking arbitrary a € A. Therefore,
ind,ig(M/A) = 1.

2. Rigidity characteristics and their values for well-ordered sets
and some their modifications

Lemma 1. If M = (M, <) is a well-ordered set, A C M is D-definable
then any its finite initial segment is contained in dcl(().

Proof. Let ¢(z) be a formula without parameters defining A. Since M
is well-ordered, its restriction M| 4 to the set A is well-ordered, too. Then
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each formula

n n—1

Yp(x) = Jaq, . .. ,Eixn[/\ o(x;) ANVy(p(y) = 1 <y) A /\ {z; < zizaN
i=1

i=1
ANYy(p(y) ANy <y <zip1 >y R VYR Tit1} AT, = 1]

expresses n-th element of A, n € w, and its solution a,,, if it exists, is con-
tained in dcl(@). Clearly, the sets {ao,...,ay} form finite initial segments,
as required.

Notice that if M is isomorphic, by an isomorphism f, to a non-limit
ordinal  + n then {f~'(a), f"H(a+1),...,fHa+ (n — 1))} C dcl(0).
Indeed, all elements f~'(a + i) are defined by formulae describing the
number of predecessors from the largest element f~!(a +n). Since these
elements are ()-definable, by Lemma 1 we conclude:

Corollary 1. If M is a well-ordered structure isomorphic to a non-limit
ordinal then both the element corresponding to the largest limit ordinal in
M and its successors belong to dcl(().

Lemma 2. If M = (M, <) is a well-ordered set then dcl(Q) consists of all
finite initial segments of (-definable subsets in M.

Proof. Let Z be the union of all finite initial segments of ()-definable
subsets in M. By Lemma 1 we have Z C dcl(()). Conversely, any element
a € dcl(0) forms the (-definable singleton {a} which is contained in Z by
the definition. Thus, Z = dcl(().

Corollary 2. For any well-ordered set M = (M, <) if M consists of finite
initial segments of O-definable sets then deg,(M) = (0,0,0,0).

Proof. It is known [4] that well-ordered sets do not have non-identical
automorphisms. Therefore, degZ*™(M) = deg%5™(M) = 0. We have

rig rig
degi_gsynt (M) = degfi_gsynt(./\/l) = 0 in view of Lemma 2. Thus, deg,(M) =
0,0,0,0).

Remark 2. Let M be a well-ordered L-structure with a well order <.
For a L-formula ¢ = ¢(x) we define the formula

Vp(r) = (z) AVy (y <z Ap(r) = 32(y < 2 <z A p(2)))

saying that for any realization a of ¢ either a is a minimal element satis-
fying ¢ or it is not minimal and there are densely many smaller elements
satisfying ¢, i.e. a does not have predecessors with respect to . We also
consider the L-formula

O(z)=Vyly<z—32(y<z<x))
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defining the set of all elements without predecessors.

Now we define a sequence (5, (x))new of formulae such that po(z) = 0(x)
and @p41(x) =Yy, (x), n € w. Using these formulae we obtain that:

i) the first initial segment in M consisting of the least element and all
its successors are contained in dcl(0);

ii) finite initial segments of ¢, (M) are contained in dcl((), n € w.

In particular, the ordinals k, w'-m, for k,l,m € w, and their well-ordered
finite sums are contained in their decl(0).

Theorem 1. For any well-ordered set M = (M, <) either deg,(M) =
(0,0,0,0), if M is at most countable, or deg,(M) = (0,00,0,00), if M is
uncountable.

Proof. By the argument for Corollary 2 we have

degZ7 ™ (M) = degly™ (M) = 0
for any well-ordered set M = (M, <).

Let M be at most countable. Then there exists &k < w such that M has
the ordering type w® 11 +w* 1. lo+... 4w -l +m for some Iy, 1o, ..., 1, m €
w [8]. In view of Remark 2 we have degi_gsynt(./\/l) = degx_gsym(/\/l) =0
implying deg,(M) = (0,0,0,0).

If M is uncountable then degi—;ynt (M) = deg:_fi_,;ynt (M) = oo since the
definable closures of finite sets can not cover M as there are countably

many formulae using finitely many fixed constants. Thus, in such a case
deg4(M) - (07 o0, 07 OO)

In view of Remark 1 the dichotomy in Theorem 1 is preserved under
transformations of well-ordered sets M to dual ones M*. Moreover, it is
preserved under the sum M + N* for well-ordered sets M and N:

Corollary 3. For any well-ordered sets M and N either degy(M+N*) =
(0,0,0,0), if M+N* is at most countable, or deg,(M~+N*) = (0, 00,0, ),
if M+ N* is uncountable.

Example 1. By Theorem 1, Remark 1 and Corollary 3,
deg,(w) = degy(w") = degy(w +w") = (0,0,0,0).

At the same time, for Z = w* + w, deg,(Z) = (1,1, 1,1), since dcl(0) = 0,
the automorphism group Aut(Z) is transitive, dcl({a}) = Z and Zy, is
semantically rigid for any a € Z.
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3. Rigidity characteristics for discrete orders

In this section we consider some discrete orders different from well-
ordered and dual ones.

Let M =(Z-n,<) for n € w\ {0}. We have

deggis ™ (M) = deg "™ (M) =n

since M is rigid with respect to finite sets containing elements in each copy
of Z. Besides, as noticed above, deg\rf{gsem(./\/l) = deg:ﬁ_gsynt(./\/l) =1 for
n = 1. At the same time, for n > 2, degyi_gsem(/\/l) = degz_;ynt(./\/l) = 00
since elements in a copy of Z do not define elements of other copies. Thus
we obtain either degy,(M) = (1,1,1,1) or degy(M) = (n,n,oc0,c0), for
ne€w{0,1}.

Taking a pure linearly ordered structure M as a sum of infinitely many
copies of Z we obtain deg,(M) = (00, 00, 00,00) since finite sets A in M
do not fix automorphisms for copies of Z which do not contain elements in

A.

Thus we obtain the following;:

Theorem 2. For any disjoint sum M of copies of Z the following possi-
bilities hold:

1) degy(M) = (1,1,1,1), if M = Z;

2) degy(M) = (n,n,00,00), if M =2Z-n fornew){0,1};

3) degy (M) = (00, 00,00,00), if M consists of infinitely many copies of
Z.

Remark 3. The values of deg, (M) in Theorem 2 are preserved if the set
of components Z for M are extended by finitely many finite linear orders,
say deg,(Z+m+2Z) = (2,2, 00,00) for any m € w.

Remark 4. The characteristics deg,(M) in Theorem 2 give the lower
bounds for orders containing sums for copies of Z. For instance, if M =

M 4+ Z+ Z + M, for some linear orders M1, My then deg5™(M) > 2,

rig
degy "™ (M) 2 2,degi*™ (M) = oo, deg ™ (M) = oo,
Lemma 3. For any natural m > 1 there exists an infinite linear ordering

M = (M, <) such that degy(M) = (m, m, 00, 00).

Proof of Lemma 3. Consider the following infinite linear ordering for
any natural m > 1:
M=w+Z+...+2Z,<).
—_—
m times

Obviously, deg,(M) = (m, m, 00, 00).
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Lemma 4. For any natural m > 1 there exists an infinite linear ordering

M = (M, <) such that degy(M) = (1,1, m,m).

Proof of Lemma 4. If M = (Z,<) then by Theorem 2 deg,(M) =
(1,1,1,1). Consider the following infinite linear ordering for any natural

m > 1:
M=(m+2Z,<).

Obviously, deg,(M) = (1,1,m +1,m + 1).
4. Rigidity characteristics for dense orders

Let M = (Q,<). Clearly, for an arbitrary A C Q the structure M is
syntactically A-rigid iff A = Q. Moreover, for any finite A C Q, dcl(A) =
A # Q. Therefore we have the following:

Proposition 2. For the structure M = (Q, <),
deg;i,"™ (M) = degi M (M) = co.

Now we consider values deg®*™(M) and degfi:;em(./\/l) based on the
automorphism group Aut((Q, <)). Notice that this group and its properties
are studied in [2;3;5;17].

Taking a finite subset A C Q we have a dense part (in fact, infinitely
many ones) in Q \ A producing many A-automorphisms f € Aut(M). It
implies that there are non-identical A-automorphisms. Thus we have the
following;:

Proposition 3. For the structure M = (Q, <),

degfi:;em(/\/l) = deg\r’{gsem(/\/l) = 00.

Propositions 2 and 3 immediately imply the following:
Corollary 4. deg,((Q, <)) = (00, 00, 00, 00).

Since sums of linear orders with Q preserve the definable closures and
automorphisms on Q we have:

Corollary 5. If M = My +Q+ My for some linear orders My, My then
deg, (M) = (00, 00, 00, 00).
Since there are many A-automorphisms if Q \ A has an infinite convex

set, we have also the following:

Corollary 6. If Q\ A has an infinite convez subset then deg,((Q,<)4) =
(00, 00,00, 00).
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In view of Corollary 6 the description of values deg,((Q, <)) is reduced
to the case when Q\ A does not have infinite convex sets, i.e., if all elements
in Q\ A are isolated. In such a case Q\ 4 is either finite or countable and
we obtain the following possibilities:

1. deg,((Q,<)4) = (0,n,0,00), if |Q\ A| = n € w (since (Q, <) 4 does not
have non-identical automorphisms, and we obtain dcl(Q \ A) = Q, whereas
the definable closures of finite subsets of A do not cover Q).

2. degy({Q,<)a) = (0,00,0,00), if |Q \ A] = w (since (Q, <) 4 does not
have non-identical automorphisms, and the definable closures of finite sets
do not cover Q).

Collecting the described possibilities we obtain:

Theorem 3. For any subset A C Q the following holds:
(1) deg,((Q, <) 4) = (00,00, 00, 00) iff Q\ A has an infinite convez subset;
(2) deg4(<Q7 <>A) = (0, n, 0, OO) iff ’Q \ A‘ =ncw \ {O};
(3) deg,({(Q,<)a) = (0,00,0,00) iff |Q\ A| = w and Q\ A has no infinite
convex subsets;
(4) deg4(<Q7 <>A) = (Oa 0,0, 0) ZﬁQ = A.

5. Rigidity characteristics for Nj-categorical weakly o-minimal
structures

An open interval in a linearly ordered structure M is a parametrically
definable subset of M of the foom I = {¢ € M : M = a < ¢ < b} for
some a,b € M U{—o00,00} with a < b. Similarly, we may define closed,
half open-half closed, etc., intervals in M. An arbitrary point a € M we
can also represent as an interval [a, a]. By an interval in M we shall mean,
ambiguously, any of the above types of intervals in M. A subset A of
a linearly ordered structure M is convez if for any a,b € A and ¢ € M
whenever a < ¢ < b we have ¢ € A.

This section deals with the notion of weak o-minimality, which initially
deeply studied by H.D. Macpherson, D. Marker, and C. Steinhorn in [9].
A weakly o-minimal structure is a linearly ordered structure M = (M, =
,<,...) such that any definable (with parameters) subset of the structure
M is a finite union of convex sets in M. Recall that such a structure M
is said to be o-minimal if any definable (with parameters) subset of M is a
union of finitely many intervals and points in M. Thus, weak o-minimality
generalizes the notion of o-minimality. Real closed fields with a proper
convex valuation ring provide an important example of weakly o-minimal
(not o-minimal) structures.

Let T be a weakly o-minimal theory, M =T, A C M, p,q € S1(A) be
non-algebraic. We say that p is not weakly orthogonal to g (denoting this by
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p LY q) if there exist an L 4-formula H(z,y), a € p(M) and f31, B2 € qg(M)
such that 51 € H(M,«a) and B2 € H(M, ).

In other words, p is weakly orthogonal to q (denoting this by p L% q) if
p(z) Uq(y) has a unique extension to a complete 2-type over A.

Lemma 5. [1] Let T be a weakly o-minimal theory, M =T, A C M.
Then the relation of non-weak orthogonality Y™ is an equivalence relation

on S1(A).

Proposition 4. Let T be an Wy-categorical o-minimal theory, M = T.
Suppose that p L™ q for any non-algebraic p,q € Si1(0). Then M is
syntactically A-rigid for any A C M containing the set of realizations of
an arbitrary non-algebraic p € S1(0).

Proof of Proposition 4. Firstly, by the Rg-categoricity of T' the definable
closure of the empty set is finite, and there are only finitely many non-
algebraic 1-types over (). Also, if p L% ¢ for some p,q € S1(0), there is a
unique (-definable strictly monotonic bijection between p(M) and g(M),
whence dcl(A) = M.

The following example shows that Proposition 4 is not true for Ng-
categorical weakly o-minimal theories in general.

Example 2. [9] Let M = (M;<,Pl, Ps, f!) be a linearly ordered struc-
ture such that M is a disjoint union of the interpretations of unary pred-
icates P; and P», where P;(M) < P2(M). We identify the interpretation
of P, with the set of rational numbers Q, ordered as usual, and the in-
terpretation of P; with Q x Q, lexicographically ordered. The symbol f
is interpreted by a partial unary function with Dom(f) = P;(M) and
Range(f) = P»(M) and defines by the equality f((n,m)) = n for all
(n,m) € Q x Q.

It can be proved that Th(M) is a weakly o-minimal (not o-minimal)
theory. Let p(z) := {Pi(2)}, q(z) := {P2(x)}. Obviously, p,q € Si(0),
p Y ¢, and there are no other non-algebraic 1-types over 0, i.e., the
hypothesis that p J* ¢ for any non-algebraic p,q € S1(0) holds. But if
we take the set A as the set of realizations of ¢, we have that M is not
syntactically A-rigid.

Proposition 5. There exists an Wg-categorical weakly o-minimal theory
T such that p L q for any non-algebraic p,q € S1(0) and for any M E
T there are A € M and p € Si1(0) with p(M) C A so that M is not
syntactically A-rigid.

Proposition 6. Let T be an Wy-categorical o-minimal theory, M = T.
Then there exist k < w and pairwise weakly orthogonal non-algebraic p1, pa,

Pk € S1(0) such that A = p1(M) Upa(M) U ... Up(M) and M is
syntactically A-rigid.
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Proof of Proposition 6. Since there are only finitely many non-algebraic
1-types over (), any family of pairwise weakly orthogonal non-algebraic 1-
types over () is also finite.

Theorem 4. Let T be an Rg-categorical weakly o-minimal theory. Then
degy (M) = (00, 00, 00, 00) for any countable M |=T.

Proof of Theorem 4. For any M |= T and any finite set A C M there
exists at least one non-algebraic p € S1(A) such that p(M) is a densely
ordered convex set. It implies that neither A can cover M by dcl(A) nor
produce a singleton Aut(M 4). Thus deg, (M) = (00, 0o, 00, 00).

6. Rigidity characteristics for mixed orders

In this section we consider rigidity characteristics for mized orders, i.e.,
dense orders composed by discrete parts, where discrete parts replace ele-
ments of dense orders.

In view of Theorem 2 if a linearly ordered set M has infinitely many
copies of Z then deg, (M) = (00, 00,00, 00). Besides, each additional copy
of Z increases finite values of both degffgsem(/\/l) and degrai:gsynt(/\/l) by one,

such that Z with infinite complement and positive degfi'gsem and deg?i_gsy]rlt

gives degx_gsem(/\/l) = deg:.fi_gSynt (M) = oo. So describing deg, (M) it suffices
to consider mixed orders without copies of Z, i.e., discrete parts consisting

of finite linear orders only.

Proposition 7. If M is a countable mized ordered set without parts Z and
with maximal finite discrete parts of bounded lengths then deg?i_gsynt(/\/l) =
degz_gsynt(/\/l) = oo. If additionally M is homogeneous then deg,(M) =
(00, 00, 00, 00).

Proof. Since M does not have parts Z and maximal finite discrete parts
have bounded lengths M contains a dense suborder S whose maximal finite
parts have same lengths and the quotient by these parts is isomorphic to
Q. It implies that no finite family A of finite discrete parts can not define
all elements of M. Indeed, any finite family A defines elements in finite
parts such that these parts are situated distinctly with respect to other
parts. Since these parts are finite, it means that there are distinct finite
possibilities of mixtures of these parts. But by the conjecture there are
finitely many isomorphism types for finite parts and S is dense, configu-
rations for the mixtures describing distinct parts should be repeated for
distinct parts Pp, P, € S with respect to A, i.e., tp(P1/A) = tp(P/A),
implying Py U P, € dcl(A).
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It is checked by routine considerations of cases. For instance, let A
consists of two parts Py, Pj and Ry, Ry € S with Py, < R; < Ry < P} and
there are k; pairwise isomorphic parts U; # R; between Py and R;, ¢ = 1,2,
ki < kg, and k] pairwise isomorphic parts U;, # R; between R; and Py,
i=1,2, k1 > kj, Uj =~ Uj,. Taking elements V of S between Ry and Ry we
have both finitely many possibilities for ki, ko, k], k, and infinitely many V.
Thus S contains distinct parts P, P> between Ry, Rs with same number
of copies of U; and U J’-, with respect to A. Considering similar finiteness
conditions we choose distinct parts P;, P, € S with tp(P1/A) = tp(P2/A).

Thus we obtain degi—gSynt (M) = oo. By Fact 1 we have degz_gsynt(./\/l) —
00, too.

If M is homogeneous then for any finite A C M there are many A-
automorphisms for S implying degi;;em(/\/l) = degf{gsem(/\/l) = oo and
deg4(M) = (OO, 00, 00, OO)

The following example shows that maximal finite discrete parts of un-
bounded lengths can produce rigid mixed linearly ordered sets M, i.e., with
deg4(M) = (07 0’ 0’ O)

Example 3. Let C,,, n € w, be disjoint finite linear orders of pairwise
distinct lengths. Now we enumerate the order Q: Q = {a, | n € w} and
replace each a, by C),. The obtained linearly ordered set M is required.
Indeed, we have both dcl(f)) = M since each part C,, is defined by its
length. We have also |[Aut(M)| = 1 since no elements in M can not be
moved into another one: any two distinct elements in M have distinct
types, as two distinct elements in one part C,, have distinct distances from
the least element of C,,, and elements in distinct parts C,, and C,, defines
their distinct cardinalities. Thus, in view of Fact 1, deg,(M) = (0,0,0,0).

The Ng-categorical linear orders were classified by Joseph Rosenstein
in [12], where he constructed them from finite linear orders using two
operations.

Definition 4. (Q,, <q,,C1,...,CL) is the Fraissé generic n-colored linear
order, i.e. the countable dense linear order with n colors which occur
interdensely (for all z and y there are z,...,2, between x and y such
that C;(z;) holds for each 7).

Definition 5. Let (L1, <1),. .., {Ln, <n) be linear orders. For each q € Q,,
we define L(q) to be a copy of (L;,<;) if Q, & Ci(q). The Q,-shuffle
of (L1,<1),...,{Ln,<n), denoted by Q,(L1,...,Ly), is the linear order

<Uq€Qn L(q), <), where
a <biff ([a,b€ Lg) Aa <] or [a € L().b € L(p) A g <q, 7))

For example, Q1 (1) is the set of rational numbers Q, Q;(2) is the set of du-
plets ordered by the order type Q, Q2(2,3) is the set of duplets and triplets
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ordered by the order type Q, and et cetera. Obviously, if M = Q,(¢1,...,t,)
for some linear orders t1, ..., t, then deg (M) = (00, 00, 00, 0).

Theorem 5. [12] M is an Ng-categorical linear order iff M can be
constructed from singletons by a finite number of concatenations or shuffles.

Also, in [7] a criterion for Ehrenfeuchtness of P-combinations of count-
ably many copies of an Ng-categorical structure of pure linear order in terms
of shuffles was obtained.

The following theorem describes all the possibilities for degrees of se-
mantical and syntactical rigidity for an infinite countable linear ordering.

Theorem 6. Let M = (M, <) be an infinite countable linear ordering.
Then only the following values for deg,(M) are possible:
(1 (07070?0);
(2) (1,1,m,m), where m € w\ {0};
(3) (m,m, 00, 00), where m € w\ {0};
(4) (00, 00,00, 00).

Proof of Theorem 6. The case (1) is guarantied by Theorem 1. The case
(2) is guarantied by Lemma 4. The case (3) is guarantied by Lemma 3.
The case (4) is guarantied by Theorem 2 and Corollary 4.

Prove now that there is no other values for deg,(M). Obviously, if
M contains at least one copy of Q then deg,(M) = (o0, 00, 00,00). Ob-
viously, if M contains at least one shuffle Q,(¢1,...,t,) for some 1 <
n < w and some linear orders ti,...,t, then we also have deg,(M) =
(00, 00, 00, 00). Also, by Theorem 2 if M contains infinitely many copies of
Z then degy (M) = (00, 00, 00, 00).

Therefore, further we suppose that M contains only finitely many copies
of Z and does not have neither copies of Q nor copies of Qy(t1,...,ty).

Suppose now that M contains infinitely many copies of w. Such a set
of copies of w can be ordered by the order type w, w*, Z or their mixed
variations.

If M= (WF-li+wh g+ 4w Iy +m, <) for some k,l1,...,l1,m € w
then by Theorem 1 deg,(M) = (0,0,0,0).

If M = (w¥-Z,<) for some natural k > 1 then deg,(M) = (1,1,1,1).

If M contains finitely many copies of kind w¥ - Z, for example:

— — — —

M={({Wh . Z+wh. 24+, 4w 2 <)

for some natural kq,...,k,, € w, m > 2 and ki21 + ki22 # 0 for some 1 <
i1 < iz < m then deg,(M) = (m, m,00,00). If there exist infinitely many
copies of kind w* - Z in M, we have deg, (M) = (00, 00, 00, c0).

If M = Wk w* +wk2 . w* .. Fwhm.w* <) for some m, ki, ..., ky €w
then we can also prove that deg,(M) = (0,0,0,0).
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We have similar reasonings for copies of w* ordered by w, w* or Z.
We also have the same degrees of rigidity for the case when M contains
infinitely many copies of both w and w*.

If M contains my copies of w, mo copies of w* and finitely many finite
linear orderings for some my,ms € w with m? +m3 # 0, then dcl(0) = M
and we have deg,(M) = (0,0,0,0). If M contains m; copies of w, ms
copies of w*, m3 copies of Z and finitely many finite linear orderings for
some mi,mg,m3 € w with m? + m3 # 0 and mg > 1 then degy(M) =
(ms3, ms, 00, 00).

7. Conclusion

We described possibilities for the semantical and syntactical degrees
of rigidity and indices for various ordered theories including well-ordered
sets, discrete, dense, and mixed orders, and for countable models of Ng-
categorical weakly o-minimal theories. All possibilities for degrees of rigid-
ity for countable linear orderings are described. It would be natural to
describe basic characteristics of rigidity for uncountable ordered structures,
circularly and spherically ordered structures.
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