«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2024. Vol 48

A Note on Wright-type Generalized q-hypergeometric Function

Author(s)
Kuldipkumar K. Chaudhary1, Snehal B. Rao1

1Maharaja Sayajirao University of Baroda, Gujarat, India

Abstract
In 2001, Virchenko et al. published a paper on a new generalization of Gauss hypergeometric function, namely Wright-type generalized hypergeometric function. Present work aims to define the q-analogue generalized hypergeometric function, which reduces to generalized hypegeometric function by letting q tends to one, and study some new properties. Convergence of the series defining generalized q-hypergeometric function and properties including certain differentiation formulae and integral representations have been deduced.
About the Authors

Kuldipkumar K. Chaudhary, Research Scholar, Department of Applied Mathematics, Faculty of Technology & Engineering, the Maharaja Sayajirao University of Baroda, Vadodara–390001, Gujarat, India, kuldip.cappmathphd@msubaroda.ac.in

Snehal B. Rao, Assistant Prof., Department of Applied Mathematics, Faculty of Technology & Engineering, the Maharaja Sayajirao University of Baroda, Vadodara–390001, Gujarat, India, snehal.b.raoappmath@msubaroda.ac.in

For citation

Chaudhary K. K., Rao S. B. A Note on Wright-type Generalized q-hypergeometric Function. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 48, pp. 80–94.

https://doi.org/10.26516/1997-7670.2024.48.80

Keywords

basic hypergeometric functions in one variable 𝑟𝜑𝑠, q-gamma functions, q-beta functions and integrals, q-calculus and related topics

UDC
517.55
MSC
33D05, 33D15, 05A30
DOI
https://doi.org/10.26516/1997-7670.2024.48.80
References
  1. Al-Omari S., Kilicman A. Notes on the q-Analogues of the Natural Transforms and Some Further Applications. ArXiv Preprint ArXiv:1510.00406, 2015.
  2. Andrews G. q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra. American Mathematical Soc., 1986.
  3. Bhardwaj H., Sharma P. An Application of q-Hypergeometric Series. GANITA, 2021, vol. 71, no. 1, pp. 161–169.
  4. Ciavarella A. What is q-Calculus. Course Hero, 2016, vol. 1.
  5. Charalambides C.A. Review of the basic discrete q-distributions. Lattice Path Combinatorics And Applications, 2019, vol. 58, pp. 166– 193. https://doi.org/10.1007/978-3-030-11102-1_9
  6. Ernst T. A method for q-calculus. Journal Of Nonlinear Mathematical Physics, 2003, vol. 10, no. 4, pp. 487–525. https://doi.org/10.2991/jnmp.2003.10.4.5
  7. Gasper G., Rahman, M. Basic hypergeometric series. Cambridge univ. press, 2004.
  8. Gauss C.F. Disquistiones Generales circa Seriem Infinitam 1+ 𝛼𝛽/1. 𝛾x+ 𝛼 (𝛼+1) 𝛽 (𝛽+ 1)/1.2. 𝛾 (𝛾+ 1) xx+ 𝛼 (𝛼+ 1)(𝛼+ 2) 𝛽 (𝛽+ 1)(𝛽+ 2)/1.2. 3. 𝛾 (𝛾+1)(𝛾+ 2) x^ 3+ etc. Thesis, Gottingen, 1866.
  9. Mansour M. An asymptotic expansion of the q-gamma function Γ𝑞(𝑥). Journal Of Nonlinear Mathematical Physics, 2006, vol. 13, no. 4, pp. 479–483. https://doi.org/10.2991/jnmp.2006.13.4.2
  10. Mathai A., Haubold, H. Special functions for applied scientists. Springer, 2008.
  11. Rainville E.D. Special Functions. Macmillan, 1960.
  12. Rao S.B., Prajapati J.C., Shukla A.K. Wright type hypergeometric function and its properties. Adv. Pure Math, 2013, vol. 3, no. 3, pp. 335–342. https://doi.org/10.4236/apm.2013.33048
  13. Rao S.B., Shukla A.K. Note on generalized hypergeometric function. Integral Transforms And Special Functions, 2013, vol. 24, no. 11, pp. 896–904. https://doi.org/10.1080/10652469.2013.773327
  14. Virchenko N., Kalla S., Al-Zamel A. Some results on a generalized hypergeometric function. Integral Transforms And Special Functions, 2001, vol. 12, no. 1, pp. 89–100. https://doi.org/10.1080/10652460108819336
  15. Wallis J. Arithmetica infinitorum. 1655.

Full text (english)