«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2023. Vol 46

A Support Vector Machine Based Synthesis of Suboptimal Feedbacks for Linear Optimal Control Problems

Author(s)
Natalia M. Dmitruk1, Maria A. Hatavets1

1Belarusian State University, Minks, Belarus

Abstract
Optimal feedback synthesis for two linear optimal control problems is studied: The terminal problem and the problem of minimizing the total impulse of the control. The main contribution of the paper is a method for constructing suboptimal feedbacks in the problems under consideration, based on a linear binary data classification for datasets obtained during the simulation process or real-time control of the system.
About the Authors

Natalia M. Dmitruk, Cand. Sci. (Phys.Math.), Assoc. Prof., Belarusian State University, Minsk, 220030, Republic of Belarus, dmitrukn@bsu.by

Maria A. Hatavets, Belarusian State University, Minsk, 220030, Republic of Belarus, hatavets@bsu.by

For citation
Dmitruk N. M., Hatavets M. A. A Support Vector Machine Based Synthesis of Suboptimal Feedbacks for Linear Optimal Control Problems. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 46, pp. 19–34. (in Russian) https://doi.org/10.26516/1997-7670.2023.46.19
Keywords
linear systems, optimal control synthesis, classification, support vector machine
UDC
517.977.5
MSC
93C05, 49N35
DOI
https://doi.org/10.26516/1997-7670.2023.46.19
References
  1. Balashevich N.V., Gabasov R., Kirillova F.M. Numerical methods for open-loop and closed-loop optimization of linear control systems. Comp. math. and math. physics, 2000, vol. 40, no. 6, pp. 799–819.
  2. V’jugin V. Matematicheskie osnovy teorii mashinnogo obuchenija i prognozirovanija. Moscow, MCCME Publ., 2013, 390 p.
  3. Gabasov R., Dmitruk N.M., Kirillova F.M. Optimization of the multidimensional control systems with parallelepiped constraints. Automation and Remote Control, 2002, vol. 63, pp. 345–366.
  4. Kirillova F.M., Dmitruk N.M., Gabasov R. Sintez optimal’nyh sistem — optimal’noe upravlenie v real’nom vremeni. Dinamika sistem i processy upravlenija, Ekaterinburg, 2015, pp. 208–219.
  5. Srochko V.A., Aksenyushkina E.V., Antonik V.G. Resolution of a Linear-quadratic Optimal Control Problem Based on Finite-dimensional Models. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 37, pp. 3–16. (in Russian) https://doi.org/10.26516/1997-7670.2021.37.3
  6. Srochko V.A., Aksenyushkina E.V. Parametric Regularization of a Linearquadratic Problem on a Set of Piecewise Linear Controls. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 57–68. (in Russian) https://doi.org/10.26516/1997-7670.2022.41.57
  7. Chernikov S.N. Linejnye neravenstva. Itogi nauki i tehniki, Moscow, 1968, pp. 137–187.
  8. Borrelli F. Constrained optimal control of linear and hybrid systems. Springer, 2003. https://doi.org/10.1007/3-540-36225-8
  9. Hertneck M. et al. Learning an approximate model predictive controller with guarantees. IEEE Control Systems Letters, 2018, vol. 2, no. 3, pp. 543–548. https://doi.org/10.1109/LCSYS.2018.2843682
  10. Hou Z.S., Wang Z. From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 2013, vol. 235, pp. 3–35. https://doi.org/10.1016/j.ins.2012.07.014

Full text (russian)