«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2023. Vol 45

Numerical Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method with Fractional Basis Functions

Author(s)
Y. Talaei1, S. Noeiaghdam2,3, H. Hosseinzadeh4

1University of Mohaghegh Ardabili, Ardabil, Iran

2Irkutsk National Research Technical University, Irkutsk, Russian Federation

3South Ural State University, Chelyabinsk, Russian Federation

4Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract
This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton’s iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions.
About the Authors

Y. Talaei, Dr. Sci., (PhD), University of Mohaghegh Ardabili, Ardabil, Iran, ytalaei@gmail.com, y.talaei@yahoo.com

Samad Noeiaghdam, Dr. Sci. (PhD), Assoc. Prof., Irkutsk National Research Technical University, Irkutsk, 664074, Russian Federation; South Ural State University, Chelyabinsk, 454080, Russian Federation, noiagdams@susu.ru

H. Hosseinzadeh, Dr. Sci. (PhD), Assoc. Prof., Ardabil Branch, Islamic Azad University, Ardabil 5615883895, Iran. hasan hz2003@yahoo.com

For citation
Talaei Y., Noeiaghdam S., Hosseinzadeh H. Numerical Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method with Fractional Basis Functions. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 45, pp. 89–103. https://doi.org/10.26516/1997-7670.2023.45.89
Keywords
fractional integro-differential equations, fractional order Chelyshkov polynomials, spectral collocation method, convergence analysis
UDC
518.517
MSC
65N35, 47G20, 35R11, 42C10
DOI
https://doi.org/10.26516/1997-7670.2023.45.89
References
  1. Ardabili J.S., Talaei T. Chelyshkov collocation method for solving the twodimensional Fredholm-Volterra integral equations. Int. J. Appl. Comput. Math., 2018, vol. 4, art. no. 25. https://doi.org/10.1007/s40819-017-0433-2
  2. Atkinson K.E., Han W. Theoretical numerical analysis; a functional analysis framework. Springer, New York, 2001.
  3. Azizipour G. Shahmorad S. A new Tau-collocation method with fractional basis for solving weakly singular delay Volterra integro-differential equations. J. Appl. Math. Comput., 2022, vol. 68, pp. 2435–2469.
  4. Brunner H., Pedas A., Vainikko G. The piecewise polynomial collocation method nfor nonlinear weakly singular Volterra equations. Math. Comp., 1999, vol. 68, pp. 1079–1095.
  5. Chelyshkov V.S. Alternative orthogonal polynomials and quadratures. Electron. Trans. Numer. Anal., 2006, vol. 25, pp. 17–26.
  6. Diethelm K. The analysis of fractional differential equations, Lectures notes in mathematics. Springer, Berlin, 2010.
  7. Hale N. An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type. IMA J. Numer. Anal., 2018, pp. 1–20.
  8. He J.H. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol., 1999, vol. 15, no. 2, pp. 86–90.
  9. Hedayati M., Ezzati R., Noeiaghdam S. New Procedures of a Fractional Order Model of Novel coronavirus (COVID-19) Outbreak via Wavelets Method. Axioms, 2021, vol. 10, art. no. 122. https://doi.org/10.3390/axioms10020122
  10. Jackiewicz Z., Rahman M., Welfert B. D. Numerical solution of a Fredholm integrodifferential equation modelling 𝜃-neural networks. Appl. Math. Comput., 2008, vol. 195, pp. 523–536.
  11. Kumar S., Sloan I. A new collocation-type method for Hammerstein integral equations. Math. of Comp., 1987, vol. 48, pp. 585–593.
  12. Martin O. On the homotopy analysis method for solving a particle transport equation. Appl. Math. Model., 2013, vol. 37, no. 6, pp. 3959–3967.
  13. Nevai P. Mean Convergence of Lagrange Interpolation. III. Trans. Math. Soc., 1984, vol. 282, no. 2, pp. 669–988.
  14. Anselone P.M. Collectively compact operator approximation theory. Printice-Hall, Inc., Engelwood Cliffs, N. J., 1971.
  15. Noeiaghdam S., Dreglea A., Isik H., Suleman M. Comparative Study between Discrete Stochastic Arithmetic and Floating-Point Arithmetic to Validate the Results of Fractional Order Model of Malaria Infection. Mathematics, 2021, vol. 9, art. no. 1435. https://doi.org/10.3390/math9121435
  16. Noeiaghdam S., Micula S., Nieto J.J. Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library. Mathematics, 2021, vol. 9, art. no. 1321. https://doi.org/10.3390/math9121321
  17. Noeiaghdam S., Micula S. Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-mathematical Model of Malaria Infection. Mathematics, 2021, vol. 9, no. 9, art. no. 1031. https://doi.org/10.3390/math9091031
  18. Noeiaghdam S., Sidorov D. Application of the stochastic arithmetic to validate the results of nonlinear fractional model of HIV infection for CD8+Tcells. Mathematical Analysis of Infectious Diseases, Elsevier, 2022, pp. 259–285. https://doi.org/10.1016/B978-0-32-390504-6.00020-6
  19. Odibat Z.M., Shawagfeh N T. Generalized Taylor’s formula. Appl. Math. Comput., 2007, vol. 186, pp. 286–293.
  20. Talaei Y., Asgari M. An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations. Neural. Comput. Appl., 2018, vol. 30, pp. 1369–1376.
  21. Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations. J. Appl. Math. Comput., 2019, vol. 60, pp. 201–222.
  22. Talaei Y., Micula S., Hosseinzadeh H., Noeiaghdam S. A novel algorithm to solve nonlinear fractional quadratic integral equations. AIMS Mathematics, 2022, vol. 7, no. 7, pp. 13237–13257. doi: 10.3934/math.2022730
  23. Talaei Y., Shahmorad S., Mokhtary P. A fractional version of the recursive Tau method for solving a general class of Abel-Volterra integral equations systems. Fract. Calc. Appl. Anal., 2022, vol. 25, pp. 1553–1584. https://doi.org/10.1007/s13540-022-00070-y
  24. Yuzbas? S., Sezer M., Kemanci B. Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method. Appl. Math. Model., 2013, vol. 37, no. 4, pp. 2086–2101.
  25. Zhu L., Fan Q. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet. Commun Nonlinear Sci Numer Simulat, 2012, vol. 17, no. 3, pp. 2333–2341.

Full text (english)