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Abstract. This paper introduces a new numerical technique based on the implicit
spectral collocation method and the fractional Chelyshkov basis functions for solving
the fractional Fredholm integro-differential equations. The framework of the proposed
method is to reduce the problem into a nonlinear system of equations utilizing the
spectral collocation method along with the fractional operational integration matrix.
The obtained algebraic system is solved using Newton’s iterative method. Convergence
analysis of the method is studied. The numerical examples show the efficiency of the
method on the problems with non-smooth solutions.
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Awnnorarusi. [Ipencrasiien 3¢ deKTUBHBIN CIIEKTPABHBINA METO/T pEllleHUsl JIPOOHBIX WH-
Terpo-auddepennuaabubix ypaBuennit @pegroabma. BBoanTcs HesBHBIN METO CIIEK-
TPAJILHOM KOJIIOKAIINU, OCHOBAHHBIA Ha JPOOHBIX Oa3MCHBIX (DYHKIUSIX eJBIIIKOBA.
CyTb MeToJ]a 3aKJI0YAeTCs B CBEJCHMM 3aJa9d K HEJMHEHHON CcucTeMe ypaBHEHUI C
HCIIOJIB30BAHUEM METO/[a CIIEKTPAIbHOM KOJIJIOKAIMN HAaPsAly ¢ MaTpUneil 1poGHOro ore-
paTopHOro nurerpuposanus. llosydennas ajaredpandeckas CHCTEMa PEIIAETCS C UCIIOb-
30BaHneM mrepanuoHHoro Mmeroga Heioroma. Mccmemyercss aHams3 CXOQUMOCTH METO/A.
Ha uncimenHbIx npuMepax noxkasaHa 3hdOEKTHBHOCTh METOIA Ha 33Ja4YaX C HETVIAIKUMHI
peIeHnusIMH.

KuroueBslie ciioBa: qpoOHbIEe HHTErPO-AudHepeHITnaATbHbIE YPABHEHHUSI, TIOTUNHOMBI e-
JIBIIIIKOBA JIPOGHOTO TIOPSIJIKA, METOJT CHEKTPAIbHON KOJIIOKAIINN, AHAJINS3 CXOIUMOCTH

Ccouika gas nurupoBaHusa: Talaei Y., Noeiaghdam S., Hosseinzadeh H. Numerical
Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method
with Fractional Basis Functions // Ussectua UpKyTCKOTO TOCYAAPCTBEHHOTO yHUBEPCH-
teta. Cepust Maremaruka. 2023. T. 45. C. 89-103.
https://doi.org/10.26516/1997-7670.2023.45.89

1. Introduction

Fredholm integro-differential equations appear in modeling various phys-
ical processes such as neutron transport problems [12], neural networks [10],
population model [24], filtering and scattering problems [7]. Fractional
differential equations are essential tools in the mathematical modeling of
some real-phenomena problems with memory [8]. Theoretical and numer-
ical analysis of fractional differential equations has been considered by
many researchers [6]. Also, many applications of fractional differential
equations can be found in bio-mathematical modeling [9;15-18]. Consider
the fractional Fredholm integro-differential equations of the form

1

D¢yy(z) = g(z) —I—/O k(z,t)f(t,yt)dt, O0<a<l, ze€Q=]0,1],
y(0)=¢, ceR,

(1.1)
where the function g € C'(2) and k € C(Q x ) are known. Assume that f
is continuous and satisfies the following Lipschitz condition argument; i.e.,

[f(z,y2) = f(z,92)| < Lylyz =], z€Q, (Ly>0). (1.2)
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The operator DS, denotes the Caputo fractional differential operator [6]
with 0 < @ < 1 (see Definition 2 in Section 2).

Orthogonal basis polynomials are the main tool in constructing approx-
imate solutions in spectral methods. Recently, some numerical methods
have been introduced by modifying the standard basis polynomials by
using the change of x to z¥, (0 < v < 1) [1;3;22;23]. The existence,
uniqueness, and smoothness of the solution of (1.1) are investigated. The
framework of this paper is to convert the problem into a fractional nonlinear
integral equation and present a high-order implicit collocation method for
its numerical solution. Because of the non-smooth behavior of the solutions
of (1.1), we utilize the fractional Chelyshkov polynomials of the form

Cnjiw(r) = Cny(a*), 0<v <1, (1.3)

where {Cn ;(z)}¥, is a set of orthogonal Chelyshkov polynomials on [0, 1]
[5]. The Chelyshkov polynomials have been used based on the spectral
method to solve various types of differential and integral equations [20;21].
The advantage of the method is to reduce the given problem into an
algebraic system of equations. Simplicity in calculating the fractional op-
erational matrix and high accuracy of the method in solving problems
with non-smooth solutions by selecting a smaller number of fractional
Chelyshkov polynomials are the other main advantage of our method.

2. Fractional Chelyshkov polynomials

The fractional Chelyshkov polynomials [5] defined as follows

N .
_ . _ 1\ .
CNmp(x) =D (=1)7" (];[_ S) (N]\J;i;; )x]”, n=0,1,..,N, (2.1)

j=n

stands for binomial coefficient.

|
in which the notation <Z) = ﬁ

Lemma 1. [21] Let z; be the roots of 5N+17071(x). Therefore, the fractional
- 1
Chelyshkov polynomial Cnya,0,0(x) has N +1 roots as x} fori=1,..., N+1.

Theorem 1. Let ®(z) = [5’]\7,0,1,(35),5]\/,17,,(95),...,C~Z’N,N7,,(a:)]T be the
Jfractional Chelyshkov polynomials vector. Then, [ (x — s)* 1®(s)ds ~

0(0,0) ©(0,1) ... ©(0,0)
o(1,0) ©(1,1) --- O(1,N)

P®(x), where P = : A : , with
O(N,0) O(N,1) ... O(N,N)

N .
(N —n\/(N+j+1 .
N ()i -
ok =3 -1 (VT (Y T B vas. @2
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is called the fractional operational matrix of integration. Here, B(-,-) de-
notes the Beta function.

Proof. Integrating of éN,ml,(:L') from 0 to x yields
z ~
/ (. —8)* 'Onpp(s)ds =
0

_ g(_l)j—n (N - ”) (N]\J;i“; 1)B(a,jy + vt (2.3)

j—n

Approximating z/¥T% in terms of fractional Chelyshkov polynomials, we
get

N
xﬂl/—l-a ~ Zék,jCN,k,u(x)v (24)
k=0
where the coefficients &, ; can be computed as follows

1 ~
& = v(2k + 1)/ "t Cy g (2)w(v)da,
0

- (R es

where w(x) = 271, By substituting (2.4), (2.5) in (2.3), we have

=v(2k+1) (
1=k

N

/0 I(:z: — 5)* " Cnpu(s)ds = > O(n, k)Cy (7). (2.6)

k=0

Now, we study the existence, uniqueness and smoothness of the solution
to the problem (1.1):

Definition 1. [6] The Riemann-Liouville fractional integral of order «
for any u € Li[a,b] is defined as JSu(z) = ﬁ [z — t)*tu(t)dt. For

a =0, we have JO := I the identity operator.

Definition 2. [6] The operator D, defined by
1 T
- _ p\lal-a-1,, fa]
(] [, 0
(2.7)

is called the Caputo differential operator of order a € R..

D& u(x) = Jlel=oplolyz) =

Ussectust VIpkyTCKOro rocylapCTBEHHOTO YHUBEPCUTETA.
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To study the regularity properties of the exact solution of the problem
(1.1), we introduce the weighted space C™(0, 1]:

Definition 3. [4/ For givenm € N and —oo < X < 1, the space C"™*(0,1]
is a set of all m times continuously differentiable functions u : (0,1] - R
such that for all x € (0,1] and i =0, ...,m, the following estimate holds

1, i<1—=)
ju@(2)] <1+ ]log(z)], i=1-2x
A > 1=\

Here ¢ for is a positive constant.

By applying fractional integral operator J§ on both sides of the Eq.
(1.1), we obtain

y(@) = 5(z) + /0 " — " R (y(0)dr, (2.8)

where

~ I o
Ry()= s [ ke af @)z §0) = et s [0 gt
I'(a) Jo I'(a) Jo
(2.9)
Therefore, the problem (1.1) is equivalent to a fractional nonlinear Volterra
integral equation of the form Eq. (2.8). In the following theorems, we

consider the existence, uniqueness and smoothness of the solution of Eq.
(2.8).

Theorem 2. Assume that the function f satisfies the Lipschitz condition
(1.2) and My, := n%a>é|k:(x,t)|. If LMy, < T'(a + 1), then, the Eq. (2.8)
x,te

has a unique continuous solution on .

Theorem 3. Let j € C™1=*(Q), Ky € C™"(R), m € N and 0 < o < 1.
Then, the solution of Eq. (2.8) satisfy the smoothness properties as follows
ly@(z)| = O(x*%), x€(0,1], fori=1,...,m.

Proof. For the proof see Theorem 2.1 in [4]. O

The result of Theorem 3 implies that the solution of Eq. (2.8) has a
singularity at the origin as z — 0T, which indicates deterioration of the
accuracy of the existing spectral methods based on standard basis func-
tions such as Chebyshev, Legendre, etc. To overcome such drawbacks, we
utilize the fractional Chelyshkov polynomials as basis functions to obtain
a consistency between the approximate and exact solutions.



94 Y. TALAEI, S. NOEIAGHDAM, H. HOSSEINZADEH

3. Numerical method

According to the implicit version of the collocation method in [11], we
consider the transformation

w(z) = Ky(z), (3.1)

to approximate the solutions of Eq. (2.8). By using (2.8) and (2.9), the
following equation holds

w(z) = F(la) /O k() f<z,§(z)+ /0 Z(z—t)o‘_lw(t)dt>dz. (3.2)

After determining the unknown function w, then we can obtain a solution

of the Eq. (2.8) by

o) =)+ [ a0 uit)ar (3.3

Now, we focus on the implementation of a spectral collocation method to
solve Eq. (3.2). By approximating w(z) in terms of fractional Chelyshkov
polynomials we have

N
w(z) ~ wy(z) =Y wiCny(r) = Wy(z), (3.4)
=0

where, W = [wy, ..., wy] is an unknown vector.

Theorem 4. Let wy be the approzimation defined in (3.4) and P be the
fractional operational matriz defined in Theorem 1, then we have

(A) /Ow(x C e Ly ()dt ~ W d(@); Wi = WP

(B) g(x) ~ (C + G)®(x), in which C := [Co,...,CN], G := [g0, ..., gn],
wit
_o(2i+1) (24 1)

1~ ~
=N 9= Ty ) One@m @, 6 =GP

Proof. Part (A): From Theorem 1, we have
/ (z — t)ale(t)dt:WN/ (z =) ®(t)dt~WNP®(x) :WNfl)(z).
0 0

Part (B): Considering (2.9) and letting ﬁg(:ﬁ) ~ G®(z), c = CB(x) we
get
_c(2i4+1)

1 ~
Ci=v(2i+ 1)/0 ¢ Cniv(z)w(x)de = NIl

Ussectust IpkyTCKOro rocyIapCTBEHHOTO YHUBEPCUTETA.
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and
(27 L.
gi = (ié_)l)/o Cn,iv(z)g(x)w(x)d.

By using Theorem 1, we can write
G(z) =~ C®(x +G/ )L (t)dt = (c+(§73) ®(z)=(C+G) ®(2),

which completes the proof. O

Assume that £Y(x) be the fractional Lagrange basis function associ-

ated with the points z; = 2/,

i = 0,..., N, the roots of the polynomial
Cn+1,0(x), and define the fractional interpolation operator as

N N

Tyu(z) = Y w@)(z); @)= [] ~—2. (3.5)
i=0 =0, i T1 T

By substituting wy(z) in Eq. (3.2) and applying Zy we obtain

Tnwn () ( / k(. ) <z e )+/ (z—t)a_le(t)dt>dz>,

(3.6)
consequently,

wy (i) = F(la)/ol k@,z)f<z,§(z)+/oz(z—t)ale(t)dt>dz. (3.7)

By using Theorem 4 in Eq. (3.7), we obtain

1 o~
WN<I'(§EZ) = F(la)/(; k(f):},Z)f(Z, (C + G+ WN)‘I)(Z)>dZ (3.8)

The integral term in (3.8) is approximated by the Gauss-Legendre quadra-
ture formula on [0, 1] with the weights and nodes (z¢, we)Y,,

1
/ k(Z;, 2)H(z)dz ~
0
N 1 .
~ ngk:(@-, 20)H(z0); H(z) = F(a)f<z, (C+G+ WN)'I>(z)> (3.9)
£=0
By substituting Eq. (3.9) in Eq. (3.8), we obtain

£;(Wy) = Wy®(Z;) ngk T, 20)H(z0) = 0. (3.10)
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Therefore,
IFN(WN) = [fo(WN), ...,fN(WN)] = 0, (3.11)

which gives a nonlinear algebraic system that can be solved by Newton’s
iterative method. The approximate solution for Eq. (2.8) is obtained in
the following form

yn(z) = (C+ G+ WnxP) ®(x). (3.12)
Newton’s method reads as follows:
J(Wn,i)on: = —Fn(Wn,i);
WN,2'+1 — WN,i + 5N,i7 (3.13)
141+ 1,
in which 0y ; = Wy i+1 — Wi; with initial guess Wy g and end condition

IFN(Wni)|loo,n < €, where € > 0 be a small enough number. The norm
|| - lloo,n is a vector norm defined by ||U||oo,n = 0121;2}]{\7{|Ui|} where U =
_7/_

U, ...,Un]. The Jacobian matrix J is defined as J; ; = adjj] By applying
the iterative process (3.13), a sequence of approximate solutions wy ;(z) =
Wy,i®(z), i = 0,1,2,..., is generated. It can be seen that for ||wy; —
wN ||oo — 0, the Jacobian matrix should be nonsingular. In the next section,
we state the convergence results for Newton’s method. To select a proper
initial guess for Newton’s method, by using the initial condition yn(0) =
¢ = C®(0) and Eq. (3.12), we choose the initial guess such that yn(0) =
(C+G+WnyoP)®(0) =C®(0). Since G = GP, we conclude that Wy =
—G. Now we obtain an upper bound for the error vector of the fractional
integration operational matrix and analyze the convergence of the method.

Theorem 5. (Generalized Taylor series [19]) Let D¥yu(x) € C(0,1], i =
0,...,N+1, where 0 < 0 < 1. Then,
al Di’jou(O) a(

u(z) = ; T )® TN T D)

with 0 < § <z, Vo € (0,1].
Theorem 6. Let D¥yu(x) € C(0,1], i = 0,..,.N+1,0 < v <1 and

un(x) = Zflvzo anéanvl,(:):) be the best approximation to u(x) out of My .
Then,

N+1)v
D U(T) |p=¢, 3.14
%H)V (2)a=¢ ( )

N N, (N+1)v
— o < ; e D 1
ol < vy M= ma D @) (315)
in which || - ||co stands for the L*-norm
|u]|oo := max{|u(z)| : x € [0,1]}. (3.16)

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
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Proof. From Theorem 5, we have

[ = unlloo <

N
D¥u(0) . gWNHDV N, Ny
< = ;W$ o < ”r((zv+ Do+ 1 < T+ Do+ 1)
(3.17)
O
Theorem 7. Let £(z) = [eg(z), ...,en(x)] := [y (x—5)* " ®(s)ds —PP(x)

be the error vector related to P. Then ||enHOo — 0 as N = oo forn =
0,..., N.

Proof. From relations (2.2)-(2.4), we have

@ N
en(a:):/(x—s)a LCNmw(s) ZenkCNky( ) =
0 k=0
N . N
Lo (N—n)\ ([ N+j+1 , o ~
:Z(—l)] (j—’rl> ( Nen >B(a,yu—|—1) (l'] —Z §k7jCN7k7y(x)> ,
j=n k=0
(3.18)
forn =0,1,..., N. On the other hand, from Theorem 6, we have
2774 = " & i COnpw (@)l = 0, N — o0, (3.19)

k=0
Therefore, we can conclude that |le,|lcc = 0as N — coforn =0,...,N. O

Theorem 8. Assume that y(z) and yn(x) are the exact solution and
approximate solution of (1.1), respectively. Then, ||y — ynllcc = 0, N —
00.

Proof. From (3.12) and (3.3), we can get

ly =yl < [5() = (C+G)® (@)oo + | / (w(t) — wn () dt .

(3.20)
On the other hand,
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and from (1.2), we can write

lw(z) —wn (z)] <

LfM’“(/ 3(2)—(C+G)® |dz+/ / =) Lw(t)dt—W y B (= )|dz).

(3.22)

So, by using Theorems 6 and 7 in (3.22), we can obtain the desired result.
O

Now, we discuss the conditions under which Newton’s iterative method
(3.13) is convergent. Consider the operator form of Eq. (3.11) as follows

Fn(wn) = wy —INKywn =0, (3.23)

where K is an approximate quadrature of integral operator K defined as

Kw(z) = F(la) /0 k. 2) f(z,g(z) + /0 Z(z—t)alw(t)dt>dz.

The Frechet derivative of Fy at wy is deﬁned as Fy(wn)(v) = v —

INK(wn)(v), in which K\ (w) de{ x, zp) < (C+G+

WN)Q)(ZE) v(ze), and [ := fy(x,y) € C(Q). From Lemma 2.2 in [14], we

can conclude that if || ZyKywy — K'w||ec — 0 as N — oo and K'w has no
eigenvalue equal to 1, then [I —Zn /Ky wn] is invertible. To this end, assume
that the following conditions hold: (R1)|f,(z,y) — f,(z',y)| < Ci|z — 2'|P,
(R2) |fy(z,u) — fy(z,v)] < Cslu — v|, where C; are positive constants.
According to triangular inequality, we get

||IN’C§VUJN — IC'w||oo < ||INIC’w — IC,wHOO + HI]\HC?VUJN — IN/C§VIU||OO
+ IZvKyw — InK'w]| oo (3.24)

From Theorem(6) and that ZyK'w € My is the best approximation to
K'w, under condition (R1), we conclude that || ZyK'w—K'w| e — 0, N —
oo. Using conditions (R2) and (3.22), we have || ZyKywy — INKywloo <
IZN || oo []wny —w]||oo — 0 as N — oco. From Theorem 1 in [13] and integration
error estimation from the Gauss-Legendre quadrature role one can show
that |ZyKyw — ZInK'w|/sc — 0 as N — oo. In the following theorem, we
deal with the local convergence of Newton’s method:

Theorem 9. Assume that wy is the solution of Eq. (3.23) and [ —K'w]™*
exists. Assume further that the conditions (R1)-(R2) be held. If there exist
a € > 0 such that |lwno — WN|o < €, then Newton’s method (3.13) is

2Z
converges. Furthermore, |[wn; — Wn|loo < (Ter) , provided that re < 1 for
some constant r.

Ussectust IpkyTCKOro roCyIapCTBEHHOTO YHUBEPCUTETA.
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Proof. If 1 is not the eigenvalue of K'w, then [I — K'w] is invertible. The
proof is straightforward from Theorem 5.4.1 in [2] and the above discussion.
U

4. Numerical examples

In this section, we intend to show the accuracy of the proposed method
to solve the problem (1.1) with non-smooth solutions. The L®-norm of
error function En(x) = |y(x) — yn(x)| is computed in all examples that is
defined in (3.16). In these examples, m denotes the number of Newton’s
iterations with initial value Wy o = —G.

The steps of the numerical method can be summarized as follows:
Input: Input N, o, v, k, f and g.

Output: The approximate solution yy(z) = g(z) + WP®(z).
Step 1. Construct the vector basis ®(t).

Step 2. Compute the vectors C, G, W from Theorem 4.
Step 3. Construct the nonlinear algebraic system (3.11).
Step 4. Solve the system (3.11) using Newton’s iterative method.

Vro1 1ty
Example 1. Consider the problem D*Oy( )= 9 4 t 2 /o Y (t)dt,
y(0) = 0.
with the non-smooth solution y(z) = /. Using relations (2.8)-(2.9), we
obtain the equivalent nonlinear integral equation

_ Va(Vm—3) zxf 1 ,
ya) = S /0 @07 Ry Ky = - /

From (3.2), we have w(z) = = [ <m+/z( —t)—%w(t)dt>dz.

NG
Now, we apply our method with N = 1. From Step 1. let

wy(x) = w061,0,1/2($) + w161,1,1/2(90) =W, ®(z);

Wi = [wo, w1], ®(z) = [2 -3z, V2| . (4.2)
From Step 2.,
= 4- o m I 3T
P=|38 3.8, W, = W,P = [Swo—ﬂwl,(él—@)wo—i-?wl],
24 8
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~ 2T —1 673 e 1
G=[15 /7 gy b 9=CGP=D1-5=

37rf e ow N
\F<(4\f— 4) 1—|—(———)w2+\f Q\F)
From Step 3., we obtain we obtain f;(W;) = W1 ®(Z;) — fol H(z)dz = 0,
consequently, F1(W1) = [fo(W1), fi(W1)] = 0, with the collocation points

= % + \1/755’ T = % — i From Step 4., Newton’s iterative method with

C:[070]7 ]7

H(z) =

the initial guess Wy g = —G gives

Wig=

)

—1.79476 x 107! 7.052370 x 1072
[—5.38429 x 101] Wi = [2.115711 x 101] o 43)

where ||F1(W1.7) 0,7 =~ 10740, Finally, we obtain an approximate solution
as y1(x) = g(z) + W P®(z) = /2 + 1.70 x 10740,

Example 2. Consider the problem

with the non-smooth solution y(z) = x3 — ?},aﬂ + ,:c2 Table 1, illustrates
the L2-errors obtained by our method for dlfferent values of N and v =
1/4,1/2,3/4,1, the order of fractional Chelyshkov polynomials denoted in
(2.1) with m = 10. The semi-log representation in Fig. 1 shows the linear
variations of the errors versus the degree of approximation in case of v =
%. This is so-called exponential convergence or spectral accuracy of the
collocation methods that have been recovered in the proposed method for

the problems with non-smooth solutions.

5. Conclusions

In this paper, a new fractional version of the collocation method has
been introduced to solve a class of nonlinear fractional integro-differential
equations. Numerical examples illustrate that the obtained results are
significant. All calculations are computed by Maple 2018 with Digits=40.
The proposed method is computationally simple and the approximate solu-
tions converge to the exact solution of the problem as the number of basis
functions increases.
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Table 1
The L*°-errors for different values of v and N for Example 2
N 2 4 6 8 10
v=1/4 | 6.4516e-02 2.7042e-03 5.9642e-05 1.5752e-07 2.2561e-07
v=1/2 | 1.2869e-02 3.1695e-05 2.1710e-06 3.8550e-10  4.8739¢-10
v=3/4 | 7.9259-02 3.9917e-02 2.5327e-02 1.8072e-02 1.3812e-02
vr=1 1.7435e-01  1.0157e-01  7.1987e-02 5.5816e-02  4.5596e-02
N 12 14 16 18 20
v=1/4 | 8.5604e-09 3.0335e-10 4.1066e-11 1.1823e-12  3.6870e-14
v=1/2 | 1.5453e-12 4.7476e-14 2.2760e-16 2.5102¢-18 1.5224e-20
v=23/4 | 1.1046e-02 9.1230e-03  7.7183e-03  6.6530e-03  5.8209e-03
r=1 3.8547e-02 3.3389e-02  2.9450e-02  2.6343e-02  2.3830e-02
07 e
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Figure 1. The L*-error for different values of N with v=1/4 (dashed-lines),

v = 1/2 (solid-line), v = 3/4 (dashed-dotted-lines) and v = 1 (dotted-lines) for
Example 2.
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