List of issues > Series «Mathematics». 2023. Vol 44
On Chu Spaces over 𝑆𝑆 − 𝐴𝑐𝑡 Category
Author(s)
Evgeniy E. Skurikhin1,2
,
Alena A. Stepanova1
,
Andrey G. Sukhonos1



1Far-Eastern Federal University, Vladivostok, Russian Federation
2Institute of Applied Mathematics FEB RAS, Vladivostok, Russian Federation
Abstract
We prove the general properties of morphisms of Chu spaces and functors
with a value in the category 𝐶ℎ𝑢(𝑆𝑆 − 𝐴𝑐𝑡) of Chu spaces over the category 𝑆𝑆 − 𝐴𝑐𝑡.
As a consequence, for the category 𝐶ℎ𝑢(𝑆𝑆 −𝐴𝑐𝑡) the existence of coproducts and some
products is proved, monomorphisms and epimorphisms are characterized; in terms of this
category the characteristics of separable and complete separable Chu spaces are given.
About the Authors
Evgeniy E. Skurikhin, Dr. Sci. (Phys.–Math.), Prof., Institute of Applied Mathematics FEB RAS, Vladivostok, 690041, Russian Federation, Far-Eastern Federal University, Vladivostok, 690920, Russian Federation, eeskur@gmail.ru
Alena A. Stepanova, Dr. Sci. (Phys.–Math.), Prof., Far-Eastern Federal University, Vladivostok, 690920, Russian Federation, stepltd@mail.ru
Andrey G. Sukhonos, Cand. Sci. (Phys.Math.), Far-Eastern Federal University, Vladivostok, 690920, Russian Federation, agsukh@mail.ru
For citation
Skurikhin E. E., Stepanova A. A., Sukhonos A. G. On Chu Spaces over
𝑆𝑆 − 𝐴𝑐𝑡 Category. The Bulletin of Irkutsk State University. Series Mathematics, 2023,
vol. 44, pp. 116–135.
https://doi.org/10.26516/1997-7670.2023.44.116
Keywords
Cartesian closed category, 𝑆-Act, Chu spaces, functors, limits
UDC
512.53, 512.58
MSC
20M30, 18M05
DOI
https://doi.org/10.26516/1997-7670.2023.44.116
References
- Barr M., Wells C. Category Theory for Computing Science. London, Prentice Hall Publ., 1995, 325 p.
- Kilp M., Knauer U., Mikhalev A.V. Monoids, acts and categories. With applications to wreath products and graphs. Berlin, De Gruyter Publ., 2000. https://doi.org/10.1515/9783110812909
- Kozhukhov I.B., Mikhalev A.V. Acts over semigroups, Fundamental and Applied Mathematics, 2020, vol. 23, no. 3, pp. 141–199. (in Russian)
- Mac Lane S. Categories for the working mathematician. Graduate Texts in Mathematics, New York, Springer, 1998.
- Skurikhin E.E. Presheaves of sets and actions of semigroups. Far Eastern Mathematical Journal, 2019, vol. 19, no. 1, pp. 63–74. (in Russian)
- Skurikhin E.E., Stepanova A.A., Sukhonos A.G. Extensions of the category S-Act. Sib. Elektron. Mat. Izv., 2021, vol. 18, pp. 1332–1357. https://doi.org/10.33048/semi.2021.18.102
- Stepanova A.A. S-acts over a Well-ordered Monoid with Modular Congruence Lattice. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 35, pp. 87–102. https://doi.org/10.26516/1997-7670.2021.35.87
- Stepanova A.A., Chekanov S.G. Congruence-permutable S-acts. Siberian Mathematical Journal, 2022, vol. 63, no. 1, pp. 167–172. DOI: https://doi.org/10.1134/S0037446622010141
- Stepanova A.A., Skurikhin E.E., Sukhonos A.G. Category of Chu spaces over SAct category, Sib. Elektron. Mat. Izv., 2017, vol. 14, pp. 1220–1237. (in Russian) https://doi.org/10.17377/semi.2017.14.104
- Stepanova A.A., Skurikhin E.E., Sukhonos A.G. Equalizers and coequalizers in categories of Chu spaces over S-Act categories, Sib. Elektron. Mat. Izv., 2019, vol. 16, pp. 709–717. (in Russian) https://doi.org/10.33048/semi.2019.16.046
- Stepanova A.A., Skurikhin E.E,. Sukhonos A.G. Product of Chu spaces in the category of Chu(S-Act), Sib. Elektron. Mat. Izv., 2020 , vol. 17, pp. 1352–1358. (in Russian). https://doi.org/10.33048/semi.2020.17.099