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1. Introduction

A left S—act, or simply S-act, over monoid S is a set A upon which S
acts unitarily on the left. A mapping f : A — B is called homomorphism
of S-acts if f(sa) = sf(a) for any a € A, s € S, f(sa) = sf(a) [2].

The category whose objects are S-acts, morphisms are homomorphisms
of S-acts, and the composition of morphisms is defined as a superposition
of the corresponding maps, is denoted by S — Act, so that Ob(S — Act) is
the class of all S-acts, Homg_4c(A, B) is the set of all homomorphisms
from S-act A to S-act B, the units of the S — Act category are the identical
mappings 14 € Homg_aq(A, A).

The monoids action on sets occurs in various situations. General prop-
erties of S-acts are actively studied, as well as classes of S-acts with specific
properties [2;3;7;8]. S-acts are special cases of presheaves of sets on
categories and are therefore related to Grothendieck toposes theory. This
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makes it possible to obtain results about S-acts, as special cases of the
results about the presheaves [5].

In [9], the category Chu(V) is introduced. Its objects are Chu spaces
r: A® X — D, a morphism from r to ' : A’ ® X’ — D’ is an arbitrary
triple (f,g,h) of morphisms f: A — A’ g: X' - X h:D — D’ in the
category V such that horo(14®g) =1"o(f®1xs). In [9-11], this category
was studied for the case when V is the S — Act category, S is a commutative
monoid and the product is a tensor product. In this paper, we study the
category Chu(SS — Act) where SS — Act is a category introduced in [6]
and is an extension of the category S — Act.

2. Preliminary Results

Define the category S.S— Act as follows [6]: Ob(SS— Act) = Ob(S— Act),
Homggs—act(A, B) = Homg_a«t(S x A, B), the composition of morphisms
u € Homgg—act(A,B) and v € Homgs—act(B,C) is defined by equality
(u-v)(s,a)=v(s,u(s,a)), where s € S, a € A, the identity morphisms in
SS — Act are the morphisms ey € Homgs—act(A, A) where es(s,a) = a.

The Chu space over the S.S— Act category is defined as the set (A,X,D,r),
where A, X, D € Ob(SS — Act), r € Homgs—act(A x X, D). If this is not
confusing, for Chu space (A,X,D,r) we will use the notation
re HomSS_Act(A X X,D).

In accordance with the general definitions [1], we define the category
Chu(SS — Act). Let r € Homgs_act(A x X, D), ' € Homgs_act(A" x
X', D). A morphism or a Chu transform of r into 7’ is a triple (f, g, h) of
f € Homgs—act(A,A'), g € Homss— (X', X), h € Homgs_act(D, D)
such that h-r - (eq x g) = ' - (f X exs). In this case we will write
(fyg,h) :r — ' I (f,¢',h) : v — r” then the composition of Chu
transforms is defined as follows:

(f.g/ W) o (f.9.0) = (f - frg -/, W D) v — 0"

3. Main Lemma

Ifu:Sx A— Bisahomomorphism of S-acts, t € S then the mapping
tu : S x A — B, given by the equality (tu)(s,a) = u(st,a), is also a
homomorphism, so that the set Homgs_ac(A, B) is endowed with the
S-act structure. Similarly to set mappings, we introduce the notation:
Homss_ ax(A, B) = B4,

In [6] it is proved that the category SS — Act is Cartesian closed, i.e., the
functors Homgg— aci(® x @, @) and Homgs— act(e, HSS(Q, e)) are isomorphic
for some functor H% : (SS — Act)® x (SS — Act) — SS — Act.

WsBectus pkyTcKoro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Let us define the functor H%°. If A,B,A",B' € Ob(SS — Act),
f € Homgs_act(A', A), g € Homgs—act(B, B') then

H"%%(A,B) = B* = Homgs_act(A, B)

and the mapping ¢/ = H5%(f,g) € HomSS_ACt(BA,B/A/) is defined as
follows:

g’ (s,w) =H5(f,9)(s,w) = (sg) - w - (sf),

where (s,w) € S x B4,

Denote by pa xp : Homgs—act(A x X,D) — Homgs—act(A, DX) a
mapping such that ((pa x.p(r))(s,a))(t,xz) = r(ts, (ta,x)), where s,t € S,
a€A xe X, re Hmgs—ac(A X X, D).

In [6] it is proved that every mapping pa x,p is bijective and

(*) PA’,X’,D’(h T (’U X g)) = hg 'pA7X7D(T') -V

for all
v € Homgs—act(A',A), g € Homgs—axt(X', X), h € Homgs—_aa(D,D’),
r € Homgs—act(A x X, D). Thus the family of mappings

PSS = {pax.p | A X,D € O)(SS — Act)}
is an isomorphism of functors
P95 . Homgg—_act(o X o, 0) — HomSS,ACt(o,’HSS(o, °)).

The equality () is equivalent to
()

pax,p(hr-(eaxg)) = h%-pa x,p(r) and par x p(r-(vxex)) = pax p(r)-v.
For r € Homgs—act(A x X, D), we introduce the notation:
7 =pax,n(r).
By rxp € Homgs_a«(D* x X, D) we also denote the Chu space such that
pDX,X,D(TXD) =TXD = €epx,

where epx : S x DX — DX is a unit in the category SS — Act. Note that
7 E HomSS_ACt(A, DX).

Lemma 1. (main Lemma)

1) Let
f € Homgs_act(A,A"), g € Homgs_ (X', X), h € Homgs_act(D, D’),
r € Homgs_act(Ax X, D), r' € Homgs_act(A" x X', D'). Then

(a) (f,9,h) € Homegpy(ss—act)(r,r") < h?-pax p(r) =pax p(')-f &
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Sh.r=r.f;

(0) (h7,9,h) € Homgpu(ss—Act)(rxD, TX'D1);
(¢) (7,ex,ep) € Homgpu(ss—Aet) (T:7xD);
(d)

(f19,h) € Homeony(ss—act)(1:7xip) < [ =h9 -paxp(r) < f=h 7,
i particular,
(6) (fvgah’) = (hgagah)o(fanaeD)‘

2) For allw € Homgs_ act(A, DY), we have pax.p(rxp-(wxex)) =w.
3) There is equality

(f) T:TXD‘(fX(ix)

and for w € Homgs_act(A, DX), r =rxp - (w x ex), we have w = 7.
4) For all w € Homgs_ act(A, DX) the following conditions are equiva-
lent:

(9) pax.p(T) = w;
(h) (w,ex,ep) € Homopy(ss—act) (1, 7XD);
(Z) T:TXD-(erX).

Proof. Let us prove 1). (a) By definition of morphisms of Chu spaces, we
have

(f,9,h) € Homepy(ss—ac) (7)< h-r-(eax g)=1"-(f x ex).

Since p4, x7.pr is bijective then
hor-(eaxg) =r"-(fxex:) & pax p(hr(eaxg)) =pax p(r'-(fxex)).

By (*x), we have
pA,X’,D’(h L. (eA X g)) = h9 'pA,X,D<7") = fz/g . /f',
pax,p(r'-(f xex)) =pax (') f=r"Ff
Hence the desired result is obtained.
(b) Since pxp x,p(rxp) = epx and ppix yi pi(rx'p’) = €pixs then by
(a) we have
(f,9.h) € Homeny(ss—act)(TxD:Tx/D1)

if and only if h9-ppx x p(rxp) = ppix' x p(rx:p)- f if and only if b9 = f.

WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 44. C. 116-135
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(c) By (a), we have (f,ex,ep) € Homepyss—ac)(r,7xp) if and only if
pax,p(r) = PDX,S,D(TXD) - f if and only if # = f.
d), (e) Since ppx' v/ p/(Tx'p) = epx then by (a) we have

(f,9,h) € Homeny(ss—act) (T, 7x' D7)

if and only if h9-pa x p(r) = parx' pr(rx:pr)-f if and only if h9-pa x p(r) =
f. By (b) and (c¢), we have

(h9,9,h) € Homgpu(ss—Act)(rxp,Tx7,D1),

(7,ex,ep) € Homeopy(ss—aet) (T, 7XD)-
Hence (hY,g,h) o (t,ex,ep) = (hY -7,g-ex,ep-h) = (f,g,h).

Let us prove 2). By (xx), we have pa x p(r- (v xex)) = pax,p(r)-v for
all v € Homgs_acxt(A',A). If v = w € Homgs_ac(A, DX) and r = rxp
then pa x p(rxp - (w x ex)) = ppx x p(rxp) - w = w.

Let us prove 3). Let r € Homgg—act(A x X, D). f w=paxp(r)=r
in 2) then pA,X,D(TXD . (f X ex)) =7 = pA,X,D(T)‘ Since PA,X,D is an
injective, then rxp - (7 x ex) = r.

Ifrxp-(wxex) =rxp-(Fxex) for some w € Homgs_ act(A, DX) then
by 2) we have w = pa x p(rxp - (w X ex)) =pax,p(rxp - (F X ex)) = 7.

Let us prove 4). The equivalence of the conditions (g) and () is proved
in 2), and the equivalence of the conditions (g) and (k) is verified by proving
(c). O

4. Monomorphisms and epimorphisms in the category
Chu(SS — Act)

Let us give conditions characterizing epimorphisms and monomorphisms
in the category Chu(SS — Act).

Theorem 1. Let r € Homgs—act(A X X, D) and v’ € Homgs—act(A’ x
X', D"). Then a morphism (f,g,h) € Homcpy(ss—act)(r,r') is an epimor-
phism if and only if f € Homgs_ax(A,A") is an epimorphism,
g € Homgs—act(X', X) is a monomorphism and h € Homgs—act(D, D') is
an epimorphism.

Proof. Necessity. Let (f,g,h) : r — ' is an epimorphism in the category
Chu(SS — Act).

We will show that f is an epimorphism in the category SS — Act. Let
f1, fa € Homgs—act(A', E) such that f1-f = fo- f. It is necessary to prove
the equality fi = fo. Define

w e Homgg_Act((E X A/) X X/,D/)



122 E.E.SKURIKHIN, A. A. STEPANOVA, A. G.SUKHONOS

and (f1,exs,epr), (f3,exr,ep’) € Homapu(ss—aer) (', w) as follows:

w(s, ((e,d),2")) =r'(s, (a’,2)),
fis,d') = (fi(s,a’),d),
fas,a) = (fa(s,a’),d)

forall s€ S, a € A, 2/ € X', e € E. It is not difficult to understand that
the definition of Chu transforms (f1,exs,ep/), (f5,exs,eps) is well defined
and equality (f],exs,ep) - (f,9,h) = (f5,exr,ep’) - (f,g,h) is true. Since
(f,g,h) is an epimorphism in the category Chu(SS — Act) then f| = f.
Thus, fi = fo and f is an epimorphism in the category SS — Act.

Now we will show that g is a monomorphism and A is an epimorphism
in the category SS — Act. Let

g1,92 € Homgs_act(E,X"), h1,he € Homgg—act(D', F)

such that g- g1 = ¢g- g2 and hy - h = ho - h. It is necessary to prove the
equality g1 = g2 and hy = hso. Define ro, 79 € Homgg_ ACt((A x E) x F by
equalities 7, = hd" -/, 7 = h? - /. By Lemma 1, h9 - 7 =1/ - f. Hence

TAl'th“lh'f’-fzh*‘lh'hg-f:(hl.h)(g-gnf:
:(hz.h)(g~92)7ﬁ:hg2'hg',’g:hg2'7:/'f:7:2'f,

that is 7:1 : f:TAQ : f

Since f is an epimorphism in the category SS — Act then 7, = 75.
Therefore 11 = 19 =1, : A x E — F, ¥, : A/ - FF. By Lemma
1(a) the equality 7y = 7, or equivalent equality h{' - 7 =7, - eq, means
that (eas,g1,h1) : 7' — 1, is a homomorphism of Chu spaces. Similarly,
(ear,g2,he) : " — r, is a homomorphism of Chu spaces too. By the
definition of composition of Chu spaces morphisms, we have

(eA’aglvhl)o(fmg)h) - (GA/ 'fvg'glvhl h) -
= (eA’ 'f7g'g2ah2'h) = (€A/,gg,h2)0(f,g,h)-

Since (f, g, h) is an epimorphism in the category SS — Act then
(earsg1,h1) = (ear, g2, ha),

S0 g1 = g2, h1 = ha. Thus, g is a monomorphism and A is an epimorphism.
Sufficiency follows directly from the definition of the composition of
morphisms of Chu spaces. O

Theorem 2. Let r € Homgs—_act(A x X, D) and ' € Homgs_act(A’ x
X', D"). Then a morphism (f,g,h) € Homcpy(ss—act)(r,7') is a monomor-
phism if and only if f € Homgs_acx(A,A") is a monomorphism,
g € Homgs_aqt(X', X) is an epimorphism and h € Homgs—_aq(D,D’)
s @ monomorphism.

WsBectus VpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Proof. Necessity. Let (f,g,h) € Homcpy(ss—act)(r; ') is a monomor-
phism.

We will show that h is a monomorphism in the category SS — Act. Let
hi,he € Homgs—act(E, D) such that h - h; = h - hy. It is necessary to
prove the equality h; = hg. Define w € Homgs—_act(A x X, E U D) and
(ea,ex,hy), (ea,ex,hy) € Homepu(ss—act)(w,r) as follows:

w(37 (a7 JI)) = 7’(8, (CL,.I)),
hi(s,e) = hi(s,e), hi(s,e) = ha(s,e),
hl(s,d) = hz(s,d) =d

for all s € S;a € A,x € X,e € E,d € D. It is not difficult to understand
that the definition of Chu transforms (e, ex,h}), (ea,ex,hb) is well de-
fined. Since h-hy = h-hg then (f,g,h)-(ea,ex,hy) = (f,g,h)-(ea,ex,hf).
Since (f,g,h) is a monomorphism in the category Chu(SS — Act) then
hy = h%. Thus, hy = hs.

Now we will show that g is an epimorphism in the category S.S— Act. By
Lemma 2 [11], it enough to show that the morphism g: S x X’ — S x X is
epimorphism in the category S— Act, where g(s,z’) = (s,g(s,2’)) fors € S,
x’ € X'. Assume the converse, i.e., X7 # S x X, where X1 = §(S x X’). By
Xo we denote the Rees factor act of S-act S x X by the Rees congruence
px, . Define

w € Homgg—act(A x (Xo x X), D)

and
(eA7 g1, eD)v (GA, 92, €D) € HomChu(SS—Act) (wa T)

as follows:

’LU(S, (a> (an x))) = T(S> (a> x))a
91(8737) = (Xl,CE),
92(s, ) = ((s,2)/px,, @),

for all s € S, a € A, x € X, xyp € Xg. Obviously g1 # ¢g2. From the
definition of the Chu space w follow the definitions of the Chu transforms
(ea,91,ep), (ea,g2,ep) are well defined. It is not difficult to understand
that g1-g = g2-g. Hence (f,g,h)-(ea,g1,ep) = (f,9,h)-(ea, g2,ep). Since
(f,g,h) is a monomorphism in the category Chu(SS — Act) then g1 = go,
contradiction. Thus, g is an epimorphism in the category SS — Act.

Finaly we will show that f is a monomorphism in the category SS— Act.
Let fi1, fo € Homgs—_act(E, A) such that f- f; = f- fo. It is necessary to
prove the equality f1 = fo. Define

r1,72 € Homgs—_act(E X X’,D)
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as follows:

T1(3, (ea 33‘,)) = T(Sa (f1(5> 6),9(8, 1‘/))),
7’2(8, (6737/)) = 7’(8, (fQ(Sv 6)79(37x/)))

for all 2’ € X', s € S, e € E. Since (f, g, h) € Homecpu(ss—act)(r, ') then

(h-r1)(s, (e, 2)) = h(s, r1(s, (e, 2"))) = h(s,r(s, (f1(8 €),9(s,2")))) =
=1'(s, (f(s, fa(s,€)),2)) =15, ((f - f1)(s, €), "))

for all 2’ € X', s € S, e € E. Similarly,

(h ’ TZ)(‘S? (e7x,)) = T,(S’ ((f : f2)(57 6)),33,)
forall2’ € X', s€ S,e€ E. Since f- fi = f- fo then

(h ’ Tl)(& (6,1")) = (h : TQ)(Sv (6,33/)),

i.e., h-ry = h-re. A morphism h is a monomorphism in the category SS —
Act. Hence 11 = ro, i.e., (s, (fi(s,€),9(s,2))) = r(s, (f2(s,e), g(s,z"))) for
allz’ e X', seS,ecE. Letze X,s€S,ecE.

We will prove the equality 7(s, (fi(s,e),z)) = r(s,(f2(s,e),z)). Since
g is an epimorphism in the category SS — Act, then by Lemma 2 [11], g
is surjective and = = g¢(s,2’) for some 2’ € X'. Then r(s, (fi(s,e),z)) =
(5, (f1(5,€),9(5,27))) = (5, (fals, ), 9(5,7"))) = r(5, (fa(s,€), 2)). Define
w € Homgs—acx(E x X, D) as follows: w(s, (e,z)) = r(s,(fi(s,e),x)).
Since

T(S7 (f2(37 6)7‘73)) :T(Sa (fl(sv 6)7 x)):w(sv (evx)):eD(va(sv (67 GX(S,.I))))
then (f1,ex,ep), (f2,ex,ep) € HomChu(SS_Act)(w,r). Obviously,

(f)gvh‘) ' (flan>eD) = (fagah‘) ' (f27eXaeD)'

Since (f,g,h) is a monomorphism in the category Chu(SS — Act) then
1= fa

Sufficiency follows directly from the definition of the composition of
morphisms of Chu spaces. O

5. Separable Chu space

The Chu space r € Homgs—aqt(A x X, D) is is called separable (com-
plete separable) if 7 = pa x,p(r) € Homgss—act(A4, DX) is a monomorphism
(isomorphism) in the category SS — Act.

WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
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Proposition 1. (on separable and complete separable Chu spaces)

1) For Chu space v € Homgs—act(A x X, D), the following conditions
are equivalent:

(a) r is separable;

(b) (7,ex,ep) is a monomorphism in the category Chu(SS— Act), where
(7,ex,ep) € Homony(ss—aet) (T, 7XD);

(b’) there exists a monomorphism w € Homgs_ act(A, DX) in the cate-
gory SS — Act such that (w,ex,ep) € Homgpy(ss—act)(T,7xD);

(c) there exists a morphism (f,g,h) € Homgcpy(ss—act)(r,7x,0) such
that f is a monomorphism in the category SS — Act.

2) Let (f,g,h) € Homcpu(ss—act)(r,7"). If f is monomorphism in the
category SS — Act and v’ is a separable Chu space then r is a separable Chu
space.

3) For Chu space v € Homgs—act(A x X, D), the following conditions
are equivalent:

(d) r is complete separable;

(e) (T ex,ep) is an isomorphism in the category Chu(SS — Act), where
(7,ex,ep) € Homgpu(ss—Act)(T:7xD);

(f) r is isomorphic to rx: pr for some X', D" € Ob(SS — Act).

Proof. Let us prove 1). (a) = (b) By Lemma 1(c), (pa,x,p(r),ex,ep) €
Homepu(ss—act)(r;7xp). Since pa x,p(r) is a monomorphism and ex,ep
are isomorphisms in the category SS — Act, then (pa x,p(7),ex,ep) is a
monomorphism in the category Chu(SS — Act).

(b) = (b') Since (7,ex,ep) € Homepy(ss—act)(r,7xp) is a monomor-
phism in the category Chu(SS — Act), then by Theorem 2, # is a monomor-
phism in the category SS — Act. Assuming w = 7, we get (b').

(b') = (¢) Obviously.

(¢) = (a) By Lemma 1(d), we have h9 -+ = f. Since f is a monomor-
phism, then 7 is a monomorphism too. Thus, r is a separable Chu spaces.

Let us prove 2). Let ' € Homgg— act(A’x X', D). Since 1’ is a separable
Chu spaces, then by (¥), there exists w’ € Homgg—_ act(A’, D'X") such that
(w',exr,epr) € Homeopu(ss—act) (', 7x/pr). Then

(W'~ f,9,h) € Homepy(ss—act) (7, 7x/D1)-

By Lemma 1(d), we have w’ - f = h9 - #. Since w' - f is a monomorphism,
then 7 is a monomorphism too. Thus, r is a separable Chu spaces.
Let us prove 3). (d) = (e) By Lemma 1(c), we have

(7,ex,ep) € Homepy(ss—act)(T:7XD)-

Since r is a complete separable Chu spaces, it follows that 7, ex, ep are iso-
morphisms. Hence (7, ex, ep) is an isomorphism in the category Chu(SS —

Act).
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(e) = (f) Obviously.

(f) = (d) Let (f,9,h) € Homcpu(ss—act)(r;7xp) is an isomorphism in
the category Chu(SS — Act). Then f,g and h are isomorphisms in the
category SS — Act. Therefore h9 is an isomorphisms. By Lemma 1(d), we
have f = h9 - 7. Thus, 7 is an isomorphisms, i.e., r is a complete separable
Chu spaces. O

6. Functors with values in the category Chu(SS — Act)

Consider the following functors: P, : Chu(SS — Act) — (SS — Act),
Py : Chu(SS — Act) — (SS — Act)°, Py : Chu(SS — Act) — (SS — Act),
Py3 : Chu(SS — Act) — (SS — Act)® x (SS — Act) that map each Chu space
r € Homgs—act(A x X, D) to the objects

P (A, X,D,r)=A, P,(A, X,D,r) =X,
P3(A, X, D,r) =D, Py3(A, X,D,r) = (X, D)

and each morphism (f, g, h) € Homgpy(ss—act)(r,7') to the morphisms

Pl(f?.gah) :fa P2(f7.g>h) =9, P3(f>gah) =h, P23(f>gah) = (gah‘)

The fact that these are functors directly follows from the definition of

composition of Chu morphisms.
Let Z be a category, F' : Z — Chu(SS — Act) be a functor. By Fy, Fb,
F3, Fy3 = (Fy, F3) we denote the functors acting as coordinates of F:

Fir=PioF:Z—(SS—Act), F,=PoF:Z — (5SS — Act)’,
F3 = PgOF = (SS—ACt), F23 = P230F 27— (SS—ACt)OX(SS—ACt).

Theorem 3. (on functors in Chu(SS — Act))

1) Let F : Z — Chu(SS — Act) be a functor. Then there are uniquely
defined functors Fy : Z — SS — Act, Fy: Z — (SS — Act)°, F3: Z — SS —
Act such that for any object z € Ob(Z) and any morphism a € Homy(z, 2'),
we have

F(z) = (F1(2), Fa(2), F3(2), 7(2)),
where r(z) € Homgs—act(F1(z) X Fa(z), F3(2)), and

F(a) = (Fi(a), Fa(a), F3(a)) € Homepu(ss—ac) (1(2), 7(2'))-

2) Let F\ : Z — (SS — Act), Fo : Z — (S8 — Act)°, F3 : Z —
(SS — Act) be the functors and for any z € Ob(Z), the morphism r(z) €
Homgs—act(F1(2) x Fy(2), F5(2)) is fired. Then the following conditions
are equivalent:

WsBectus MpkyTcKOro rocy1apcTBEHHOTO YHUBEPCUTETA.
Cepusi «Maremarukay. 2023. T. 44. C. 116-135



ON CHU SPACES OVER SS — Act CATEGORY 127
(a) the mapping set by the equalities

F(z) = (Fi(2), Fa(2), F3(2),7(2)), F(a) = (Fi(a), Fa(a), F3(a)) (1)

is a functor F : Z — Chu(SS—Act), where z € Ob(Z) anda € Homyg(z,7');
(b) for any a € Homyz(z,z") we have

(Fi(a), Fy(a), F3(a)) € Homepuss—ac)(r(2),m(2)). (2);

(c¢) for any a € Homz(z,2') we have

—_

F3(a)™@ - r(z) = r(2') - Fi(a); (3);

(d) the family

—

W = {W(z) = 7(2) € Homss_aa(Fi(2), F5(2))) | 2 € 0b(2)}
is a homomorphism of functors W : F; — F3F2 = N5 o (Fy, F3).
Proof. Let us prove 1). Since F(z) is a Chu space, it follows that
F(z) = (A, X,D,r(z)) for some r(z) € Homgs—_act(A x X,D). So, by
the notations above, A = Pi(F(z)) = Fi(2), X = Py(F(2)) = Fx(z),
D = P3(F(z)) = F3(z). If a € Homgz(z,2') then

F(a) = (f,9,h) € Homcpu(ss—aer) (r(2),m(2")).

Hence [=Pi(F(a)=Fi(a). g = P>(F(a) = Fy(a), h = Py(F(a)) = Fy(a).
Thus, F(a) = (Fi(a), Fx(a), F3(a)).
) Obviously.

Let us prove 2). (a) = (b
(b) = (a) Since r(z) € Homgs—act(F1(z) X Fa(z), F3(z)), it follows that
F(z) € Ob(Chu(SS — Act)). By (2), we have

F(a) = (Fi(a), Fa(a), F3(a)) € Homcopy(ss—ac)(r(2),m(2)).

Let b € Homy(Z',2"). Since Fy, F» and F3 are functors, then by the
definition of composition of Chu transform, we have

F(boa) = (Fi(boa), Fa(boa), F3(boa)) =
= (F1(b) - Fi(a), Fa(a) - Fo(b), F3(b) - Fi(a)) =
= (F1(b), F2(b), F3(b)) o (Fi(a), Fa(a), F3(a)) = F(b) o F(a),

3(
and F(ez) = (Fi(ez), Fa(ez), Fa(ez)) = (1p (2)s iy (2), LRy(2)) = 1r(z)- Thus,
F is a functor.
By Lemma 1(a), the conditions (b) and (c) are equivalent.
By definition of a morphism (natural transformation) of functors, the
conditions (c¢) and (d) are equivalent. O
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7. Fundamental theorem on the functor H

Consider the following functors:
Hy =H% : (S8 — Act)® x (8§ — Act) — (SS — Act),
Hy: (SS — Act)? x (88 — Act) — (SS — Act)®,
Hs: (SS — Act)? x (SS — Act) — (SS — Act),
where Hy(X,D) = X, Ho(g,h) = g, H3(X,D) = D, Hs(g,h) = h for all

X,D € Ob(SS — Act), g € Homgs_act(X',X), h € Homgs_act(D, D").
Then

rxp = Homgs—act(H1(X, D) x Ho(X, D), H3(X, D)),
and by Lemma 1(b), we have

(H1(g,h), Ha(g, h), H3(g,h)) = (h%,g,h) € Homcpy(ss—aet)(TxD>Tx'D1)-

Therefore the condition (b) of Theorem 3 is true for the category Z =
(SS — Act)? x (SS — Act) and functors F; = H;. Hence, by Theorem 3(a),
the mapping given by the equalities

H(X,D) = (D¥,X,D,rxp), H(g,h) = (h?,g,h)
is a functor H : (SS — Act)? x (SS — Act) — Chu(SS — Act).

Theorem 4. (on the functor H)

1) The functor H is full and faithful.

2) Let F: Z — Chu(SS — Act) be a functor given by the equality (1).
There is a canonical functor homomorphism

V={V(z2)| 2z€ Ob(Z)} : F — H o Fys,

such that V(z) = (W(2): €py(2), €py(2)) € Homanu(ss—act) (1(2) TEy(2)B3(2))»
where W (z) = r(2) € Homgs— act(Fi(2), F3(2)"2(3).

3) The functor H is right adjoint for the functor Pas.

4) (a) Let z € Ob(Z). Then
V(2) is a monomorphism < W(z) is a monomorphism < F(z) is a sepa-
rable Chu space;
V(z) is an isomorphism < W (z) is an isomorphism < F(z) is a complete
separable Chu space.

(b) The functor homomorphism V : F' — H o Fy3 is an isomorphism <
F(z) is a complete separable Chu space for all z € Ob(Z).

Proof. 1) Let us show that H is a full and faithful functor, i.e., the mapping
Homss— actyox (s5—aet) (X, D), (X', D)) = Homenu(ss—ace)(TxDs "X D1);
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such that H(g,h) = (h9,g,h), is bijective. The injectivity is obvious.
We prove surjectivity. Let (f,g,h) € Homgpy(ss—act)(TxD,Tx/pr). Since
(h9,9,h) € Homepy(ss—act)(rxp,Tx/pr), then by Lemma 1(d), we have
f=nh9 ie, H(g,h) = (f,g,h). Hence, the mapping H(g,h) — (h9,g,h) is
bijective. Thus, the functor H is full and faithful.

2) There are equalities (H o F33)(2) = 7', (2) 1y (2)}

(H o Py3)(a) = (F3(a)™), Fy(a)Fs(a));
F(2) = r(2); F(a) = (Fi(a), F2(a), F3(a)).

To prove that V is a functor homomorphism, , it is necessary to prove the
equality
V(2') o F(a) = (H o Fy3)(a) o V(2) (4)

for all a € Homy(z,2').

Since V(2') o F(a) = (W(Z') - Fi(a),emry - Fa(a), epy(z) - F3(a)) and
(H o Fy3)(a) o V(2) = (F3(a)™*@ . W(2), Fy(a) - ery(z); F3(a) - emy(z)), then
the equality (4) means that the following three equalities are true:

W (') - Fi(a) = F3(a)®@ . W(2);

ng(z’) . Fz(a) = Fg(a) . ng(z); ng(z’) . Fg(a) = Fg(a) . eFd(z)

The first of the equality coincides with equality (3) of Theorem 3 and
therefore it is true, the second and the third equalities are obvious.

3) Let us use one of the standard properties of adjoint functors [4], and
to do this, we will prove that the anjunction gives an unit and a counit,
i.e. there are the functor homomorphisms 7 : lcpyss—acy — H o Pag,
€:Py3oH — 195 ActoxSS— Act, Such that

HeonH =1y, €Pa3 o Pasn = 1p,,, (5)
where the functor homomorphisms
He:HoPysoH - H andnH :H —- Ho Pyso H
are defined as follows:
(nH)(X. D) = n(H(X, D)) : H(X, D) — (H o P)(H(X, D)),
(He)(X,D)=H(e(X,D)): H((Pa3s0o H)(X,D)) — H(X, D).

Note that Pag o H = 1(Chu(55—Act))o x Chu(SS—Act)-
Define the counit ¢ of adjunction as the identity homomorphism

€= {€(X¢ D) € Hom(SS—Act)"X(SS—Act)((Xa D)v (X7D>) |
X,D € Ob(SS — Act)},
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e(X,D) = (ex,ep). Obviously, the functor homomorphisms He and €Pa3
are the identity transformation of functors.

To define the units 1 of an adjunction we apply the result of 2) to the case
Z = Chu(SS — Act) and F = 1opy(s5—act) : Chu(SS — Act) — Chu(SS —
Act). Therefore Fo3 = Po3 and if € Homgs—act(A x X, D), then H o
Pys(r) = H(X,D) = rxp, V(r) = (f,ex,ep) € Homcpu(ss—act)(T,7xD)
and V' @ lopy(ss—act) = H o Pa3 is a functor homomorphism. Suppose
n = V. Since "xp = epx, it follows that

(nH)(X,D) =V(rxp) = (epx,ex,ep) =
=1u(X, D) € Homchy(ss—aet)(H(X, D), H(X, D))

so that nH : H — H = H o P»3 o H is the identity transformation of
functors. We also have

(Pa3n)(r) = Pa3(7,ex,ep) = (ex,ep) =
= 1P23(T) S Hom(szAct)Ox(szAct)(P23(T)7 Pos(r)).

Hence Pa3n : Pog — Pog = Pa3 0 H o Pog is the identity transformation of
functors.

Thus, the functor homomorphisms He, nH, €Ps3, Pa3n are the identity
transformation of functors, hence the equalities (5) are hold. Therefore the
functor H is right adjoint for the functor Pas.

4) directly follows from Theorem 3 and general properties of functor
homomorphisms. O

8. Limits, products and coproducts in the category
Chu(SS — Act)

Theorem 5. (on limits) Let Z be a category, F' : Z — Chu(SS— Act) be a
functor such that F(z) is a complete separable Chu space for all z € Ob(Z).
If every functor Z — SS— Act has a limit and every functor Z° — SS— Act
has a colimit, then there exists limF' that is complete separable Chu space.

Proof. By Theorem 3, there are functors Fy : Z — S5 — Act, Iy : Z —
(SS—Act)?, F3: Z — SS—Act such that F(z) = (Fi(2), Fa(2), F5(2),7(2)),
F(a) = (Fi(a), Fx(a), F3(a)), where

r(z) € Homgs_act(F1(2) x Fy(2), F5(2)),a € Homz(z,2').
By Fy : Z° — SS — Act we denote the functor given by the equali-
ties F5(2) = Fa(z) and Fy(a) = Fa(a) € Homiss_ac)e(F2(2), F2(2')) =

Homgs—act(FS(Z'), F$(z)), where a € Homzo(2',z). By the conditions of
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Theorem, the functor F3 has a colimit, and the functor F3 has a limit, i.e.,
there are universal cones

05 = {p2(2) € Hom(ss—actyo(F3(2), X)) | z € Ob(Z)},

w3 = {p3(z) € Homgs—act(D, F3(2)) | z € Ob(Z)}

where the first cone is the colimit, the second cone is the limit. Thus,
X = colimF3, D = limF3. By properties of dual categories,

w2 = {pa(z) € Homgs—_act(X, Fa(2)) | z € Ob(Z)}

is the limit cone of the functor Fb such that X = limF>. Hence, by the
properties of the product of categories,

a3 ={(02(2), v3(2)) € Hom(ss— actyox (55— act) (X, D), Fa3(2)) |z € Ob(Z)}

is the limit cone of the functor Fys = (Fy, F3).

Since the functor H has a left adjoint, it translates the limit cone
into the limit cone, i.e., H(pas) = {H(p23(2)) | z € Ob(Z)}, where
H(p23(2)) = (93(2)92), 09(2), p3(2)) is the limit cone of the functor H o
Fss. In particular, H(X, D) = rxp = lim(H o Fy3).

By Theorem 4, there is a canonical functor homomorphism V : F —
H o Fy3. Since each F(z) is a complete separable Chu space, then V' is an
isomorphism of functors. Hence

{V(2)™" o H(p23(2)) € Homeopu(ss—ae)(rxp, F(2)) | 2 € Ob(Z)}
is the limit cone of the functor F. Therefore limF = rxp. Since V(z) =

— — ]
(’I“(Z), 1F2(z)7 1F3(z)) then V(z)_l = (’I“(Z) ’]‘FQ(Z)? 1F3(z))) L.e.,

—1

V(2)™' o Hpa)(2) = (r(z) - 03(2)7, 02(2), 93(2))-
U

The proof of Theorem 6 implies the existence of the product in complete
separable Chu spaces.

Theorem 6. Let r; € Homgs—act(Ai X X, D;) (i € I) be the complete
separable Chu spaces. The product of Chu spaces r;, i € I, is the complete
separable Chu space rx,p, with Chu transforms

(7))~ -pF,qi, i) € Homcpy(s5—Act)(TX0Do5 i),

where Xo = [[ Xi, Do = [ Di, qi(s,zi) = x;, pi(s,d) = d(i) for all
icl iel

v, €X;,de ] Di,iel.
el
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Proof. Consider a discrete category Z such that objects are elements of the
set I. Then the family {r; € Homgs_act(4; x Xi, D;) | i € I} is the same
as functor F': Z — Chu(SS — Act) defined by equality F'(i) = r;, and the
limit of the functor F' is the product of the family. Therefore, the result
being proved is a particular case of Theorem 5. 0

The following theorem shows that in the category Chu(SS — Act) the
coproducts exist for any Chu spaces.

Theorem 7. Let r; € Homgs—act(A; X X;,D;), i € I. The coproduct of
the Chu spaces 1;, i € I, is the Chu space

re Homgg_ACt(H A; % H X, H Dl)
iel el el

with Chu transforms (fi, gi, hi) € Homgpy(ss—act) (i, 7), where

r(s, (ai, ) = ri(s, (ai, 2(i))),
f’i(saai) = ai,gi(s,m) = :E(Z)a
hi(s,d;) = d;
foralla; € A;, v € [[ Xi, di € Dy, i € 1.
el
Proof. Let i € I. The equalities

hi(s, (ri(s, (ai, gi(s, ©))))) = ri(s, (@i, 2(2))) =
=7r(s, (ai, ) = r(s, (fi(s, a:), )

for all a; € A;, x € ][] X;, imply well-definability of the definition of the
el
Chu transform (f;, gi, hi)-
Let t € Homgs—act(B x Y, D), (f{,9;, ;) € Homepy(ss—act) (i t)- By
Theorem 4 [6], S-act [] A; with morphisms f;, i € I, is a coproduct of

el
S-act A; (i € I), S-act [] D; with morphisms h;, i € I, is a coproduct
el
of S-acts D; (i € I), and S-act [] X; with morphisms g;, i € I, is a
el

product of S-acts X; (i € I) in the category SS — Act. Then there are
unique morphisms f € Homgs_aqt([] 4i, B), § € Homgss—act(Y, [ Xi),
iel iel
h € Homss_act(]] Di, D) such that f! = f- fi, ¢} = gi-§ and h}, = h-h; for
i€l

all 7 € Ia i'e'a f(svai) = fi(s7ai)7 §(s,y)(z) = g;(svy) and iL(S,d) = h;(S,d)
for all a; € Aj, y€Y,de D, i€l

Let us prove (f,§,h) € Homgpy(ss—act)(r,t), that is, the equality is
hold A(s,7(s, (a,§(s,y)))) = t(s, (f(s,a),y)) for all a € [] As, y € Y. Since

i€l
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(fi» 9ir hi) € Homgpy(ss—Act)(Ti, ), then

r(s, (fi(s,a),g(s,y))) = hi(s, ri(s, (a, (9i - 9)(s,9))))
for all a € A;, y € Y. Since b} = h - h; and ¢} = g; - §, then

h(s, (s, (a,3(y))) =

= (h-hi)(s,7i(s, (a, (gi - §)(5,9)))) = hi(s,7i(s, (a, gi(s,9))))

for all @ € A;, y € Y. Since (f{,g;,h;) € Homcpu(ss—act)(ri,t), then
W(s,rils, (a,g)(5.0)) = t(s, (f1(5a).9)}) for all a € A;, gy € V. Since

f(s,a) = fl(s,a) then t(s, (fi(s,a),y)) = t(s,(f(s,a),y)) for all a € A;,
y € Y. Thus,

h(s,r(s, (a,3(5,9)))) = t(s. (f(s,a) x y))
forallae [[ 4, yeY. O

el

9. Conclusion

In this paper, we study the category Chu(SS — Act). It is known [6]
that the category S'S — Act is Cartesian closed and the embedding functor
S — Act — S5 — Act has a left adjoint. Using this result, we prove the
general properties of morphisms of Chu spaces and functors with a value
in the category Chu(SS — Act) of Chu spaces over the category SS — Act.
As a consequence, for the category Chu(SS — Act) the existence of coprod-
ucts and some products is proved, monomorphisms and epimorphisms are
characterized; in terms of this category the characteristics of separable and
complete separable Chu spaces are given.
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