«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2023. Vol 43

On the Solution of Hammerstein Integral Equations with Loads and Bifurcation Parameters

Author(s)
Nikolai A. Sidorov1, Lev Ryan D. Dreglea Sidorov1

1Irkutsk State University, Irkutsk, Russian Federation

Abstract
The Hammerstein integral equation with loads on the desired solution is considered. The equation contains a parameter for any value of which the equation has a trivial solution. Necessary and sufficient conditions are obtained for the coefficients of the equation and those values of the parameter (bifurcation points) in its neighborhood the equation has a nontrivial real solutions. The leading terms of the asymptotics of such branches of solutions are constructed. Examples are given illustrating the proven existence theorems
About the Authors

Nikolai A. Sidorov, Dr. Sci. (Phys.–Math.), Prof., Irkutsk State University, Irkutsk, 664003, Russian Federation, sidorov@math.isu.runnet.ru

Lev Ryan D. Dreglea Sidorov, student, Irkutsk State University, Irkutsk, 664033, Russian Federation, lev.ryan.lev@gmail.com

For citation
Sidorov N.A., Dreglea Sidorov L.R.D. On the Solution of Hammerstein Integral Equations with Loads and Bifurcation Parameters. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 43, pp. 78–90. (in Russian) https://doi.org/10.26516/1997-7670.2023.43.78
Keywords
Hammerstein equation, branching, bifurcation points, asymptotics, loads.
UDC
517.968.4
MSC
45G10
DOI
https://doi.org/10.26516/1997-7670.2023.43.78
References
  1. Bruno A.D. Power Geometry in Algebraic and Differential Equations. Amsterdam, Elsevier, 2000.
  2. Vainberg M.M., Trenogin V.A. Theory of branching of solutions of nonlinear equations. Groningen, Wolters-Noordhoff B.V., 1964, 510 p.
  3. Volkov V.T., Yagola A.G. Integral equations. Calculus of Variations: Course of lectures: textbook. Moscow, KDU, 2008. (in Russian)
  4. Krasnov M.L., Kiselev A.I., Makarenko G.I. Integral equations: tasks and examples with solutions. Moscow, Editorial URSS Publ., 2003. (in Russian)
  5. Nahushev A.M. Loaded equations and their applications. Moscow, Nauka Publ., 2012. (in Russian)
  6. Romanova O.A., Sidorov N.A. On the construction of the trajectory of a dynamical system with initial data on the hyperplanes, The Bulletin of Irkutsk State University. Series Mathematics, 2015, vol. 12, pp. 93–105
  7. Sidorov N.A., Dreglea Sidorov L.R.D. On Bifurcation Points of the Solution of the Hammerstein Integral Equation with Loads. Dynamical Systems and Computer Science: Theory and Applications (DYSC 2022): Proceedings of the 4th International Conference. Irkutsk, September 19–22, 2022, pp. 41–44. (in Russian)
  8. Sidorov N.A., Leont’ev R.Ju. On solutions of the maximum order of smallness of nonlinear equations with a vector parameter in sectoral neighborhoods. Tr. IMM UrO RAN, 2010, vol. 16, no. 2, pp.226–237. (in Russian)
  9. Sidorov N.A., Sidorov D.N. Nonlinear Volterra Equations with Loads and Bifurcation Parameters: Existence Theorems and Construction of Solutions. Differantial Equations, 2021, vol. 57, pp. 1640–1651. https://doi.org/10.1134/S0012266121120107
  10. Sidorov N.A., Sidorov L.D. On the role of the spectrum of one class of integralfunctional operators in solving nonlinear Volterra equations with loads. Proceedings of the 7th International Conference on Nonlinear Analysis and Extremal Problems (NLA-2022), Irkutsk, 2022, pp. 115–116.
  11. Trenoguine V.A. Analyse fonctionnelle [traduit du russe par V. Kotliar] Ed. Mir, ´ 1985.
  12. Sidorov N.A. Special Issue Editorial Solvability of Nonlinear Equations with Parameters: Branching, Regularization, Group Symmetry and Solutions Blow-Up. Symmetry, 2022, vol. 14, iss. 2, 226. https://doi.org/10.3390/sym14020226
  13. Sidorov N.A., Sidorov D.N., Sinitsyn A.V. Toward general theory of differentialoperator and kinetic models. Book Series: World Scientific Series on Nonlinear Science Series A, vol. 97. Ed. L. Chua. S’pore, World Scientific, 2020, 496 p. https://doi.org/10.1142/11651
  14. Sidorov N., Loginov B., Sinitsyn A., Falaleev M. Lyapunov-Schmidt methods in nonlinear analysis and applications. Mathematics and its Application Ser., vol. 550. Kluwer Pub., Dordrecht, 2002. https://doi.org/10.1007/978-94-017-2122-6

Full text (russian)