«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2023. Vol 43

Optimal Location Problem for Composite Bodies with Separate and Joined Rigid Inclusions

Author(s)
Nyurgun P. Lazarev1, Galina M. Semenova1

1North-Eastern Federal University, Yakutsk, Russian Federation

Abstract
Nonlinear mathematical models describing an equilibrium state of composite bodies which may come into contact with a fixed non-deformable obstacle are investigated. We suppose that the composite bodies consist of an elastic matrix and one or two built-in volume (bulk) rigid inclusions. These inclusions have a rectangular shape and one of them can vary its location along a straight line. Considering a location parameter as a control parameter, we formulate an optimal control problem with a cost functional specified by an arbitrary continuous functional on the solution space. Assuming that the location parameter varies in a given closed interval, the solvability of the optimal control problem is established. Furthermore, it is shown that the equilibrium problem for the composite body with joined two inclusions can be considered as a limiting problem for the family of equilibrium problems for bodies with two separate inclusions.
About the Authors

Nyurgun P. Lazarev, Dr. Sci. (Phys.–Math.), North-Eastern Federal University, Yakutsk, 677000, Russian Federation, nyurgun@ngs.ru

Galina M. Semenova, Cand. Sci. (Ped.), Assoc. Prof., North-Eastern Federal University, Yakutsk, 677000, Russian Federation, sgm.08@yandex.ru

For citation
Lazarev N. P., Semenova G. M. Optimal Location Problem for Composite Bodies with Separate and Joined Rigid Inclusions. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 43, pp. 19–30. https://doi.org/10.26516/1997-7670.2023.43.19
Keywords
optimal control problem, composite body, Signorini conditions, rigid inclusion, location.
UDC
517.97
MSC
49J40, 49J20
DOI
https://doi.org/10.26516/1997-7670.2023.43.19
References
  1. Andersson L.-E., Klarbring A. A review of the theory of elastic and quasistatic contact problems in elasticity. Phil. Trans. R. Soc. Lond. Ser. A, 2001, vol. 359, pp. 2519–2539. https://doi.org/10.1098/rsta.2001.0908
  2. Bermúdez A., Saguez C. Optimal control of a Signorini problem. SIAM J. Control Optim., 1987, vol. 25, pp. 576–582. https://doi.org/10.1137/0325032
  3. Duvaut G., Lions J.-L. Inequalities in Mechanics and Physics. Berlin, Springer, 1976, 416 p.
  4. Furtsev A., Itou H., Rudoy E. Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation. Int. J. of Solids Struct., 2020, vol. 182-183, pp. 100–111. https://doi.org/10.1016/j.ijsolstr.2019.08.006
  5. Hintermüller M., Kopacka I. Mathematical programs with complementarity constraints in function space: C-and strong stationarity and a path-following algorithm. SIAM J. Control Optim., 2009, vol. 20, no. 2, pp. 868–902. https://doi.org/10.1137/080720681
  6. Hintermüller M., Laurain A. Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim., 2011, vol. 49, no. 3. pp. 1015–1047. https://doi.org/10.1137/080745134
  7. Hlavaˇcek I., Haslinger J., Neˇcas J., Loviˇsek J. Solution of Variational Inequalities in Mechanics. New York, Springer-Verlag, 1988, 285 p.
  8. Kazarinov N.A., Rudoy E.M., Slesarenko V.Y., Shcherbakov V.V. Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion. Comput. Math. Math. Phys., 2018, vol. 58, no. 5, pp. 761–774. https://doi.org/10.1134/S0965542518050111
  9. Khludnev A. Non-coercive problems for Kirchhoff–Love plates with thin rigid inclusion. Z. Angew. Math. und Phys., 2022, vol 73, no. 2, pp. 54. https://doi.org/10.1007/s00033-022-01693-0
  10. Khludnev A. Shape control of thin rigid inclusions and cracks in elastic bodies.Arch. Appl. Mech., 2013, vol. 83, pp. 1493–1509. https://doi.org/10.1007/s00419-013-0759-0
  11. Khludnev A., Kovtunenko V. Analysis of Cracks in Solids. Southampton, WITPress, 2000, 386 p.
  12. Khludnev A., Negri M. Optimal rigid inclusion shapes in elastic bodies with cracks. Z. Angew. Math. und Phys., 2013, vol. 64, pp. 179–191. https://doi.org/10.1007/s00033-012-0220-1
  13. Khludnev A.M., Novotny A.A., Soko lowski J., Zochowski A. Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions. J. Mech. Phys. Solids., 2009, vol. 57, pp. 1718–1732. https://doi.org/10.1016/j.jmps.2009.07.003
  14. Khludnev A., Popova T. Equilibrium problem for elastic body with delaminated T-shape inclusion. J. Comput. Appl. Math., 2020, vol. 376, pp. 112870. https://doi.org/10.1016/j.cam.2020.112870
  15. Kikuchi N., Oden J.T. Contact Problems in Elasticity: Study of Variational Inequalities and Finite Element Methods. Philadelphia, SIAM, 1988, 508 p.
  16. Kovtunenko V., Leugering G. A shape-topological control problem for nonlinear crack-defect interaction: The antiplane variational model. SIAM J. Control Optim., 2016, vol. 54, no. 3, pp. 1329–1351. https://doi.org/10.1137/151003209
  17. Lazarev N. Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack. Z. Angew. Math. Mech., 2016. vol. 96. no. 4. pp. 509–518. https://doi.org/10.1002/zamm.201500128
  18. Lazarev N., Kovtunenko V. Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions. Mathematics, 2002, vol.10, no. 2, pp. 250. https://doi.org/10.3390/math10020250
  19. Lazarev N., Rudoy E. Optimal location of a finite set of rigid inclusions in contact problems for inhomogeneous two-dimensional bodies. J. Comput. Appl. Math., 2022, vol. 403, no. 10, pp. 113710. https://doi.org/10.1016/j.cam.2021.113710
  20. Leugering G., Soko lowski J., Zochowski A. Control of crack propagation by shapetopological optimization. Discret. Contin. Dyn. S - Series A., 2015, vol. 35, no. 6, pp. 2625–2657. https://doi.org/10.3934/dcds.2015.35.2625
  21. Namm R.V., Tsoy G.I. Solution of a contact elasticity problem with a rigid inclusion. Comput. Math. and Math. Phys., 2019, vol. 59, pp. 659–666. https://doi.org/10.1134/S0965542519040134
  22. Novotny A., Soko lowski J. Topological Derivatives in Shape Optimization, Series: Interaction of Mechanics and Mathematics. Berlin, Springer-Verlag, 2013, 336 p.
  23. Rademacher A., Rosin K. Adaptive optimal control of Signorini’s problem. Comput. Optim. Appl., 2018, vol. 70, pp. 531–569. https://doi.org/10.1007/s10589-018-9982-5
  24. Rudoy E. Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body. Z. Angew. Math. Phys., 2015, vol. 66, pp. 1923–1937. https://doi.org/10.1007/s00033-014-0471-0
  25. Rudoy E. First-order and second-order sensitivity analyses for a body with a thin rigid inclusion. Math. Methods Appl. Sci., 2016, vol. 39, pp. 4994–5006. https://doi.org/10.1002/mma.3332
  26. Rudoy E. On numerical solving a rigid inclusions problem in 2D elasticity. Z. Angew. Math. Phys., 2017, vol. 68, p. 19. https://doi.org/10.1007/s00033-016-0764-6
  27. Shcherbakov V. Shape optimization of rigid inclusions for elastic plates with cracks. Z. Angew. Math. Phys., 2016, vol. 67, p. 71. https://doi.org/10.1007/s00033-016-0666-7
  28. Wachsmuth G. Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Control Optim., 2014, vol. 24, no.3, pp. 1914–1932. https://doi.org/10.1137/130925827

Full text (english)