«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2022. Vol 42

About an Estimation Problem of a Linear System with Delay of Information

Author(s)
Boris I. Ananyev1, Polina A. Yurovskikh1

1N. N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russian Federation

Abstract
The problem of guaranteed estimation with geometrically bounded initial states and integrally limited disturbances is considered under delay information in the measurement equation. At the additional assumptions the problem is reduced to the creation of the reachable set of a special system. A discrete multistage system is specified for which the information set converges in Hausdorff’s metric to the corresponding information set of the continuous system when the diameter of partition is reduced. A numerical example is given.
About the Authors

Boris I. Ananyev, Dr. Sci. (Phys.–Math.), Senior Res., N. N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, 620108, Russian Federation, abi@imm.uran.ru

Polina A. Yurovskikh, Postgraduate, N. N. Krasovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, 620108, Russian Federation, polina2104@list.ru

For citation
Ananyev B. I., Yurovskikh P. A. About an Estimation Problem of a Linear System with Delay of Information. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 42, pp. 3–16. https://doi.org/10.26516/1997-7670.2022.42.3
Keywords
guaranteed estimation, information set, reachable set
UDC
517.977
MSC
93E10,62L12,34G25
DOI
https://doi.org/10.26516/1997-7670.2022.42.3
References
  1. Ananyev B.I., Yurovskikh P.A. Approksimatsiya zadachi garantirovannogo otsenivaniya so smeshannymi ogranicheniyami. Trudy IMM UrO RAN, 2020, vol. 26, no.4, pp. 48–63. https://doi.org/10.21538/0134-4889-2020-26-4-48-63 (in Russian)
  2. Ananyev B.I., Yurovskikh P.A. O zadache otsenivaniya s razdel’nymi ogranicheniyami na nachalnyye sostoyaniya i vozmushcheniya. Trudy IMM UrO RAN, 2021, vol. 28, no. 1, pp. 27–39. https://doi.org/10.21538/0134-4889-2022-28-1-27-39 (in Russian)
  3. Ananyev B.I. A Guaranteed State Estimation of Linear Retarded Neutral Type Systems. AIP Conference Proceedings 1895, 2017, 050001. https://doi.org/10.1063/1.5007373
  4. Ahmedova N.K., Kolmanovskii V.B., Matasov A.I. Constructive filtering algorithms for delayed systems with uncertain statistics. ASME Journal of Dynamic Systems, Measurement, and Control. Special Issue: Time Delayed Systems, 2003, vol. 125, no. 2, pp. 229–235. https://doi.org/10.1115/1.1569951
  5. Gusev M.I. O metode shtrafnich funktsii dlya upravlyaemich sistem c fazovimi ogranicheniyami pri integral’nich ogranicheniyach na upravleniye. Trudy IMM UrO RAN, 2021, vol. 27, no. 3, pp. 59–70. https://doi.org/10.21538/0134-4889-2021-27-3-59-70
  6. Kolmanovskii V.B., Kopylova N.K., Matasov A.I. An approximate method for solving stochastic guaranteed estimation problem in hereditary systems. Dynamic Systems and Applications, 2001, vol. 10, no. 3, pp. 305–325.
  7. Kurzhanski A.B., Varaiya P. Dynamics and Control of Trajectory Tubes: Theory and Computation. SCFA, Birkh¨auser, 2014, 445 p.
  8. Srochko V.A., Aksenyushkina E.V., Antonik V.G. Resolution of a Linearquadratic Optimal Control Problem Based on Finite-dimensional Models. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 37, pp. 3–16. https://doi.org/10.26516/1997-7670.2021.37.3(in Russian)
  9. Srochko V.A., Aksenyushkina E.V. On Resolution of an Extremum Norm Problem for the Terminal State of a Linear System. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 34, pp. 3–17. https://doi.org/10.26516/1997-7670.2020.34.3
  10. Filippova T.F. Control and estimation for a class of impulsive dynamical systems. Ural Math. J., 2019, vol. 5, no. 2, pp. 21–30. https://doi.org/10.15826/umj.2019.2.003

Full text (english)