«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2022. Vol 41

Nonlinear Kantorovich Problems with a Parameter

Author(s)
Vladimir I. Bogachev1,2,3,4, Ilya I. Malofeev2,3

1Lomonosov Moscow State University, Moscow, Russian Federation

2National Research University Higher School of Economics, Moscow, Russian Federation

3Saint Tikhon’s Orthodox University, Moscow, Russian Federation

4Moscow Center for Fundamental and Applied Mathematics, Moscow, Russian Federation

Abstract
We consider nonlinear Kantorovich problems with marginal distributions and cost functions depending measurably on a parameter and prove that there exist optimal transportation plans that are also measurable with respect to the parameter. Unlike the classical linear Kantorovich problem of minimization of the integrals of a given cost function with respect to transportation plans, we deal with nonlinear cost functionals in which integrands depend on transportation plans. Dependence of cost functions on conditional measures of transportation plans is also allowed.
About the Authors

Vladimir I. Bogachev, Dr. Sci. (Phys.–Math.), Prof., Moscow State University, Moscow, 119991, Russian Federation, vibogach@mail.ru

Ilya I. Malofeev, Cand. Sci. (Phys.Math.), Researcher, National Research University Higher School of Economics, Moscow, 101000, Russian Federation, ilmalofeev@yandex.ru

For citation
Bogachev V. I., Malofeev I. I. Nonlinear Kantorovich Problems with a Parameter. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 96–106. https://doi.org/10.26516/1997-7670.2022.41.96
Keywords
Kantorovich problem, optimal plan, measurability with respect to a parameter
UDC
517.9
MSC
49Q22, 28C15, 28A33, 46E27
DOI
https://doi.org/10.26516/1997-7670.2022.41.96
References
  1. Alibert J.-J., Bouchitt´e G., Champion T. A new class of costs for optimal transport planning. European. J. Appl. Math., 2019, vol. 30, no. 6, pp. 1229–1263. https://doi.org/10.1017/S0956792518000669
  2. Ambrosio L., Gigli N. A user’s guide to optimal transport. Lecture Notes in Math., 2013, vol. 2062, pp. 1–155. https://doi.org/10.1007/978-3-642-32160-3_1
  3. Backhoff-Veraguas J., Beiglb¨ock M., Pammer G. Existence, duality, and cyclical monotonicity for weak transport costs. Calc. Var. Partial Differ. Equ., 2019, vol. 58, no. 203, pp. 1–28. https://doi.org/10.1007/s00526-019-1624-y
  4. Backhoff-Veraguas J., Pammer G. Applications of weak transport theory. Bernoulli, 2022, vol. 28, no. 1, pp. 370–394. https://doi.org/10.3150/21-BEJ1346
  5. Bogachev V.I. Measure Theory. Vols. 1, 2.. Berlin, Springer, 2007. https://doi.org/10.1007/978-3-540-34514-5
  6. Bogachev V.I. Weak Convergence of Measures. Amer. Math. Soc., Providence, Rhode Island, 2018, 286 p. https://doi.org/10.1090/surv/234
  7. Bogachev V.I., Doledenok A.N., Malofeev I.I. The Kantorovich problem with a parameter and density constraints. Mathematical Notes, 2021, vol. 110, no. 6, pp. 149–153. https://doi.org/10.4213/mzm13187
  8. Bogachev V.I., Kolesnikov A.V. The Monge – Kantorovich problem: achievements,connections, and prospects. Uspekhi Matem. Nauk, 2012, vol. 67, no. 5, pp. 3–110 (in Russian); English transl.: Russian Math. Surveys, 2012, vol. 67, no. 5. pp. 785–890. https://doi.org/10.4213/rm9490
  9. Bogachev V.I., Malofeev I.I. Kantorovich problems and conditional measures depending on a parameter. J. Math. Anal. Appl., 2020, vol. 486, no. 1, pp. 1–30. https://doi.org/10.1016/j.jmaa.2020.123883
  10. Dedecker J., Prieur C., Raynaud De Fitte P. Parametrized Kantorovich–Rubinˇstein theorem and application to the coupling of random variables. Dependence in probability and statistics. Lect. Notes Stat., 2006, vol. 187, pp. 105–121, https://doi.org/10.1007/0-387-36062-X_5
  11. Dellacherie C. Un cours sur les ensembles analytiques. Analytic sets, New York, Academic Press, 1980, pp. 184–316.
  12. Doledenok A.N. On a Kantorovich problem with a density constraint. Matem. Zametki, 2018, vol. 104, no. 1, pp. 45–55 (in Russian); English transl.: Math. Notes, 2018, vol. 104, no. 1, pp. 39–47. https://doi.org/10.4213/mzm11506
  13. Engelking P. General Topology. Warszawa, Polish Sci. Publ., 1977, 626 p.
  14. Gozlan N., Roberto C., Samson P.-M., Tetali P. Kantorovich duality for general transport costs and applications. J. Funct. Anal., 2017, vol. 273, no. 11, pp. 3327–3405. https://doi.org/10.1016/j.jfa.2017.08.015
  15. Korman J., McCann R.J. Optimal transportation with capacity constraints. Trans. Amer. Math. Soc., 2015, vol. 367, no. 3, pp. 1501–1521. https://doi.org/10.1090/S0002-9947-2014-06032-7
  16. Kuksin S., Nersesyan V., Shirikyan A. Exponential mixing for a class of dissipative PDEs with bounded degenerate noise. Geom. Funct. Anal. (GAFA), 2020, vol. 30, no. 1, pp. 126–187. https://doi.org/10.1007/s00039-020-00525-5
  17. Rachev S.T., R¨uschendorf L. Mass Transportation Problems. Vol. 1, 2. New York, Springer, 1998, vol. 1, 508 p., vol. 2, 430 p.
  18. Santambrogio F. Optimal Transport for Applied Mathematicians. Birkh¨auser/-Springer, Cham, 2015, 353 p. https://doi.org/10.1007/978-3-319-20828-2
  19. Villani C. Optimal Transport, Old and New. New York, Springer, 2009, 973 p.https://doi.org/10.1007/978-3-540-71050-9

Full text (english)