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1. Introduction

In this paper we study nonlinear Kantorovich problems with marginal
distributions and cost functions depending measurably on a parameter.
We consider measures on completely regular Luzin spaces, i.e., images
of complete separable metric spaces under continuous injective mappings.
This important class of spaces contains all Borel subspaces of complete
separable metric spaces (see [5, Corollary 6.8.5]), but also many nonmetriz-
able spaces encountered in applications. The parameter takes values in
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a Souslin space (Souslin spaces are images of complete separable metric
spaces under continuous mappings). For the classical linear Kantorovich
problem the existence of optimal plans measurable with respect to the
parameter has recently been proved in [9] under broad conditions. In
particular, if XY are complete separable metric spaces or, more generally,
completely regular Luzin spaces, a parameter set " is a Souslin space, a cost
function h: T x X x Y — [0, +00) is Borel measurable and for every fixed
t € T the function (z,y) — h(t,z,y) is lower semicontinuous (which means
that the sets {(z,y): h(t,x,y) < c} are closed), then, for any given Borel
mappings t — p; and ¢ — 14 with values in the spaces P(X) and P(Y)
of Borel probability measures on X and Y, where the spaces of measures
are equipped with their weak topologies, one can find optimal Kantorovich
plans o; that are Borel measurable in .

Recall (see [2], [8], [17], [18], and [19] for more details) that for a sin-
gle Borel measurable cost function h: X x Y — [0,+00) and two given
measures 1 € P(X) and v € P(Y) an optimal Kantorovich plan for the
triple (u, v, h) is a Borel probability measure on X x Y belonging to the set
II(u, v) of measures with projections p and v on the factors and minimizing
the integral of h with respect to measures from II(u, ). Such an optimal
plan exists if i is lower semicontinuous. In other words, the value

K = inf hd
)= e[ o

is attained.

A nonlinear Kantorovich problem, investigated recently by several au-
thors (see [1], [3], [4], and [14]), deals with minimization of more general
integrals of the form

Jh(a):/Xxyh(x,y,o*)a(dxdy), (1.1)

where the cost function h: X x Y x P(X xY) — [0, +00) can now depend
on the measure o with respect to which it is integrated. The term “weak
transport cost” used in some of these works does not look appropriate. So
we call problems of this new type “nonlinear” to emphasize that the cost
functional is not linear with respect to the plan.
In the parametric version the cost function also depends on a parameter
t from a Souslin space T. Our main result states that this more general
problem has solutions measurably dependent on the parameter. There is
an interesting special case of dependence of the cost function on the plan
(actually, the cost functions considered in [1], [3], [4], and [14] are of this
type):
hz,y,0) = H(z,0%), (1.2)
where H is defined on X x P(Y) and o% are conditional measures for o
with respect to its projection ox on X, that is, x — ¢® is a Borel mapping
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from X to P(Y) such that

/Mf () o (dr dy) = /X /Y f(@.y) 0" (dy) o (da)

for every bounded Borel function f on X x Y. Such cost functions have
worse continuity properties, because conditional measures depend on o
measurably, but not always continuously. It is also possible to define
conditional measures ¢” as measures on X X Y concentrated on the sets
{z} x Y, in which case the function H is defined on X x P(X xY) and can
be identified with h. Our second main result states that for cost functions of
type (1.2) with a parameter there are also solutions depending measurably
on this parameter, but here the convexity of h in ¢ is additionally required
as in the cited papers. For the classical Kantorovich problem measurable
dependence on parameters has been studied in [7], [9], [10], [16], and [19],
including the case of problems with pointwise constraints in the spirit of [15]
(see also [12]).

2. Measurable plans for general nonlinear costs

Before giving exact formulations, we recall that the weak topology on the
set P(X) of Borel probability measures on a completely regular topological
space X is induced by the weak topology on the whole space M(X) of
signed Borel measures on X generated by all seminorms of the form

M'—>/ fdu,
X

where f belongs to the space of bounded continuous functions on X. If X
is a complete metric space, then P(X) with the weak topology is metriz-
able with a complete metric, for example, one can use the Kantorovich—
Rubinshtein norm

lallxcr = sup{/xfdﬂr f € Lipy (X), |f] < 1},

where Lip; (X) is the space of 1-Lipschitz functions. Recall that on a Souslin
space every measure p € P(X) is Radon: for all Borel sets B one has

pu(B) =sup{u(K): K C B, K is compact}.

If X is a Luzin completely regular space, then P(X) is also Luzin in
the weak topology and its compact subsets are metrizable (see [5, The-
orem 8.9.6] or [6, Theorem 5.1.8]). In particular, every uniformly tight set
is metrizable, that is, a set M C P(X) such that for every € > 0 there is a
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compact set K C X with u(X\K) < ¢ for all p € M. Uniformly tight sets
have compact closures in the weak topology by the Prohorov theorem. For
more details on this background material see [5] and [6].

Given a nonnegative Borel function h on X x Y x P(X xY'), we set

Jn(o) = /X><Y hz,y,0)o(drdy), o€ P(X xY).

We need a simple observation: the function Jj, with values in [0, +o0] is
lower semicontinuous on uniformly tight subsets of P(X x Y) provided
that h is lower semicontinuous on every set of the form S x M, where
S is compact in X x Y and M C P(X x Y) is compact and uniformly
tight. Indeed, since the values Jyax(n,n)(0) increase to Ji (o), the assertion
reduces to the case h < 1. Next, J, can be uniformly approximated on
M by functions J, with g lower semicontinuous on X x Y x M, because
for each € € (0,1) there is a compact set K C X x Y with o(K) >1—¢
for all 0 € M. On the set K x M the function A can be represented as
sup,, hy, for a sequence of continuous functions h, > 0 (see [13, 1.7.15(c)]),
but the same expression defines a lower semicontinuous function g on all of
X xY x M and |Jy(0) — J4(o)| < 2¢ for all 0 € M. Finally, dealing with
continuous h, we obtain yet another uniform approximation of Jj by Jy
with f of the form f(z,y,0) = >.1", vi(z,y)¢;i(0), where ¢; is a bounded
continuous function on X x Y and ; is a bounded continuous function
on M. For such f the function J; is continuous. In order to construct f
we apply the Stone-Weierstrass theorem and find f of the indicated form
such that |h(z,y,0) — f(z,y,0)| < e for all (z,y) € K, 0 € M. Finally, the
functions ¢; can be redefined in such a way that ¢; = 0 outside a suitable
neighborhood U of K, the values on K remain the same and f takes values
in [0, 2] (the original function f takes values in [0,2] only on K x M).
This implies that the sets {o € M;: J,(u) < ¢} are closed. In addition,
the function Jj, attains a minimum on every closed uniformly tight set on
which it is finite. If X and Y are complete separable metric spaces and
the function h is lower semicontinuous, then the functional Jj is lower
semicontinuous on all of X X Y x P(X x Y'), which is verified shorter (see

[31)-

Theorem 1. Suppose that t — py, T — P(X) and t — v, T — P(Y) are
Borel mappings and

h: TxXxY xP(X xY)—[0,+00)
is a Borel function such that for every t € T the function
he: (z,y,0) = h(t,z,y,0)

is lower semicontinuous on sets of the form K x II(u¢,ve) with compact
K C X xY and Ky, (us,ve) is finite for every t € T. Then the function
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t — Ky, (ue,vt) is Borel measurable and there is a Borel mapping t — oy
from T to P(X xY) such that oy is optimal for (ug,ve, he) for each t.
Moreover, there exists a sequence of Borel mappings &, from T to P(X xY)
such that for each t the sequence of measures &, (t) is everywhere dense in
the set of optimal plans for the triple (pu, vy, hy).

Proof. 1t is worth noting that we can assume from the very beginning that
the spaces X and Y are complete separable metric. Indeed, a Luzin space
is obtained from such a space by weakening the topology, but the Borel o-
algebra remains the same. In addition, Borel measures on the original space
remain Radon measures with respect to the metric (because on complete
separable metric spaces all Borel measures are Radon) and every set II(u, v)
is uniformly tight and compact in the weak topology on the space P(X xY)
corresponding to the metrics on X and Y, hence on such sets we have
coincidence of the weak topologies on P(X x Y') generated by the original
Luzin topology and the stronger metrizable topology. On the whole space
P(X xY) these two topologies are different if X x Y is not a Polish space
in the original topology. Finally, the lower continuity is also preserved in
the stronger metrizable topology.
The set

S={(t,o) eTxP(X xY): o0& U(u,r)}

is Borel, because the inclusion o € II(us, 1) can be written as a countable
family of equalities

| s@otdrdy) = [ i) mido)
XxY X

/ 9;i(y) o(dz dy) = / 95 (y) ve(dy),
XxY Y

where { f;} and {g;} are some sequences of bounded continuous functions on
X and Y separating measures (such sequences exist on all completely regu-
lar Souslin spaces, see [5, Corollary 6.7.5, Theorem 6.7.7, Lemma 8.10.38]).
The sections

Sy =A{o: (t,o) € S} = (s, 1)

are compact.

Let us recall the following classical result (“Measurable Choice Theo-
rem”), see [11, p. 224, 225]. Let T be a Souslin space, E a Luzin space,
and let B C T x E be a Borel set such that for all ¢ € T the sections
B, are o-compact (countable unions of compact sets). Then B admits a
Borel uniformization, which means that the projection 7y (B) of B on T is
a Borel set and there is a Borel mapping f: mp(B) — E whose graph is
contained in B.
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By this theorem applied to E' = P(X xY), in which case the projection of
M on T is T, there exists a sequence of Borel mappings (,: T — P(X xY)
such that for each ¢ the sequence {(,(t)} is everywhere dense in IT(p, v4).

The function (¢, 0) — Jp, (o) with values in [0, +00] is Borel measurable
on T x P(X xY). Indeed, this function is the result of substitution of o
for ¢ in the function

(t,0,¢) — h(t,z,y,C) o(dx dy),
XxY

which is Borel measurable. This is shown in [9, Lemma 3.1] for bounded h,
but for unbounded h the result follows by considering max(h, V) and letting
N — oo.

Next, if for every fixed ¢ the function ¢ — Jp, (o) is continuous on
(¢, v), then

B, (e ) = 08 Ty (Gu(1).

Each function Jy,((,(t)) is Borel in t, because (,(t) is Borel in ¢ and
(t,0) — Jp, (o) is jointly Borel measurable. Hence the left-hand side is Borel
measurable in . But the functions Jj, can be only lower semicontinuous,
when the previous argument does not work. In this case we apply the
measurable selection theorem to verify that Kj, (u, 1¢) is Borel measur-
able. With the aid of this theorem we shall construct a sequence of Borel
functions J, on T'x P(X x Y') such that J,(t, o) increases to J;(o) for each
o € II(p, v¢) and is continuous in the second argument. It suffices to find
a countable family of functions J,, of this kind such that J = sup,, J,, and
pass to the functions max(Jy,...,J,). The required family is constructed
as follows. For each rational number r the set

Zy ={(t,0): 0 € W(ps, ), Jn,(0) <7}

is Borel in T'xP(X xY') and its sections S, = {o: (t,0) € Z,} are compact
by the compactness of II(, ;) and the lower semicontinuity of J;,. Hence
the projection A, of this set on T is Borel and there is a sequence of Borel
mappings 7, j: A, = P(X x Y) such that {r,;(t)} is dense in S, for each
t € A,. The function §,(t,0) = inf; ||c — 7. ;(t)||k R, i.e., the K R-distance
from o to S, is Borel measurable on T'x P(X xY'). For each n, let 6,.,, be
the function on R defined by 6, ,(s) =0if s < 1/n, 0,,(s) =rif s > 2/n,
and 6, ,(s) =nr(s—1/n) if 1/n < s < 2/n. Set Jpn(t,0) = 6,,(5:(t,0))
if t € A, and J,,,(t,0) = r otherwise. It is readily seen that .J,.,, is Borel
measurable and continuous in o. In addition, J,,(t,0) < Jp, (o) whenever
o € (g, 1), since Jpp, <1 and Jy, (o) > rif o € S, 4, while J;.,(t,0) =0
if o € S;;. Finally,

I, (0) =sup Jpn(t,0) for all o € II(py, vr).
rn
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Indeed, otherwise there is a rational number r with

Jh, () > 1 > sup J, n(t, o).

Tmn

By the lower semicontinuity of J;, there is a number n with

lo—7;(Olxr > 2/n

for all j. Then J,,(t,0) = r, a contradiction. It remains to use the
following simple fact: if continuous functions f, on a compact space K
increase pointwise to a bounded function f, then their minima increase to
the minimum of f, which exists since f is lower semicontinuous. Indeed,
let m be the minimum of f. The functions f, A m increase to m and by
Dini’s theorem convergence is uniform. Hence their minima increase to m,
which yields our claim. In our situation, having Borel functions J, (¢, o)
increasing to Jp, (o) and continuous in o, we obtain that their minima on
II(pt, v¢) are Borel measurable in ¢ and increase to Kp, (e, vt).
Our next step is to repeat the same reasoning for the set

M = {(t, U) €Ss: Jht(a) = Kht(”hyt)}?

which is also Borel in the space T'x P(X xY'). The sections M; are compact
by the lower continuity of the function J, and the fact that the set of points
of minimum of a lower continuous function on a compact set is compact.
Now we get a sequence of mappings &, such that {£,,(¢)} is dense in M;. O

Remark 1. It is clear from the proof that the same assertion is true if h
takes values in [0, +00]. Moreover, if we agree that the minimum is attained
in the case where Jp,,(0) = +o0 for all o € II(pu, 1), then the assumption
that Kp, (pe, ¢) < oo can be removed. It follows from the proof that the
sets {t € T: Ky, (ut, ) < C} are Borel, so we can apply the theorem to
such parametric sets.

3. Nonlinear costs with conditional measures

We now turn to cost functions of the form (1.2). In this case, an
additional restriction is imposed on cost functions.

Theorem 2. Suppose that in Theorem 1 the cost function h is of the form
(1.2), where H is defined on T x X x P(Y), the functions

Ht: («T,p) = H(tvxap)

are lower semicontinuous and, in addition, the functions p — H(t,z,p) are
convex for all t,x. Then the conclusion of Theorem 1 is true.
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Proof. In order to obtain a Borel function when substituting ¢® for p in
H(t,x,p), we use the fact established in [9] that conditional measures o*
(which are unique only up to a redefinition on a measure zero set) can be
selected in such a way that the functions (x,0) — o*(B) will be Borel
measurable for each Borel set B C Y. It follows from [3] that the function
o +— Jp,(0) is lower semicontinuous on IT(x, ). To be more precise, this is
shown in [3] in the case of metric spaces, but as explained at the beginning
of the proof of Theorem 1 this is sufficient for our purposes. Actually, the
reasoning in [3] directly applies in the case of Luzin spaces (however, it is
important to consider J, on uniformly tight sets). Therefore, the sets

My = {(t, o): o€ (ue, 1), /X H(t,z,0%) u(dx) = Kht(ut,yt)}

are compact. Hence the same reasoning as in Theorem 1 applies. ]

What we have said in Remark 1 is also valid in the present situation.

It would be interesting to consider more general cost functions in (1.2)
of the form H(t,z,y,0") or H(t,x,y,0", c¥).

Note that in our paper [9] the case of Souslin spaces X and Y was
also considered with appropriate concepts of measurability. This leads to
some complications in the proof, because the measurable choice theorem
applied above is not valid for such spaces. However, it is likely that the
constructions from [9] extend to Souslin spaces in the present more general
setting, which will be the subject of another paper.
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