«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol 38

On Integration of the Loaded mKdV Equation in the Class of Rapidly Decreasing Functions

Author(s)
A. B. Khasanov, U. A. Hoitmetov
Abstract

The paper is devoted to the integration of the loaded modified Kortewegde Vries equation in the class of rapidly decreasing functions. It is well known that loaded differential equations in the literature are usually called equations containing in the coefficients or in the right-hand side any functionals of the solution, in particular, the values of the solution or its derivatives on manifolds of lower dimension. In this paper, we consider the Cauchy problem for the loaded modified Korteweg-de Vries equation. The problem is solved using the inverse scattering method, i.e. the evolution of the scattering data of a non-self-adjoint Dirac operator is derived, the potential of which is a solution to the loaded modified Korteweg-de Vries equation in the class of rapidly decreasing functions. A specific example is given to illustrate the application of the results obtained.

About the Authors

Aknazar Khasanov, Dr. Sci. (Phys.–Math.), Prof., Samarkand State University, 15, University Boulevard, Samarkand, 140104, Republic of Uzbekistan, tel.: (99866)239-14-36, email: ahasanov2002@mail.ru

Umid Hoitmetov, Cand. Sci. (Phys.–Math.), Khorezm Branch of the V. I. Romanovskiy Institute of Mathematics, Urgench State University, 14, Kh. Alimjan st., Urgench, 220100, Republic of Uzbekistan, (99862) 224-67-00, email: x.umid@urdu.uz

For citation

Khasanov A.B., Hoitmetov U.A. On Integration of the Loaded mKdV Equation in the Class of Rapidly Decreasing Functions. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 38, pp. 19-35. https://doi.org/10.26516/1997-7670.2021.38.19

Keywords
loaded modified Korteweg-de Vries equation, Jost solutions, inverse scattering problem, Gelfand-Levitan-Marchenko integral equation, evolution of scattering data.
UDC
517.957
MSC
37K15
DOI
DOI https://doi.org/10.26516/1997-7670.2021.38.19
References
  1. Ablowitz M.J., Segur H. Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981, 425 p.
  2. Blashchak V.A. Analog obratnoy zadachi teorii rasseyaniya dlya nesamosopryajennogo operatora. I [An Analog of the Inverse Problem in the Theory of Scattering for a Non-Selfconjugate Operator. I] Differencialnye Uravneniya, 1968, vol. 4, no. 8, pp. 1519-1533. (in Russian)
  3. Demontis F. Exact solutions of the modified Korteweg–de Vries equation. Teoreticheskaya i Matematicheskaya Fizika, 2011, vol. 168, no. 1, pp. 886-897. https://doi.org/10.1007/s11232-011-0072-4
  4. Dodd R.K. Eilbeck J.C., Gibbon J.D., Morris H.C. Solitons and Nonlinear Wave Equations. London et al., Academic Press, 1982, 630 p.
  5. Zakharov V.E., Takhtadzhyan L.A., Faddeev L.D. Complete description of solutions of the ”sine-Gordon” equation. Sov. Phys. Dokl., 1974, vol.19, no. 6, pp. 824-826.
  6. Zakharov V.E., Shabat A.B. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. Sov. Phys. JETP, 1972, vol. 34, no. 1, pp. 62-69.
  7. Kozhanov A.I. Nonlinear loaded equations and inverse problems. Comput. Math. Math. Phys., 2004, vol. 44, no. 4, pp. 657-675.
  8. Mamedov K.A. Ob integrirovanii modifitsirovannogo uravneniya Kortevega-de Friza s istochnikom integralnogo tipa [On integration of the modified Korteweg-de Vries equation with a source of integral type]. Doklady Akademii Nauk RUz, 2006, no. 2, pp. 24-28. (in Russian)
  9. Nakhushev A.M. Nagrujennye uravneniya i ix prilojeniya [Loaded equations and their applications]. Diff. Urav. 1983, vol. 19, no. 1, pp. 86-94. (in Russian)
  10. Nakhushev A.M. Uravneniya matematicheskoy biologii [Equations of Mathematical Biology]. Moscow, Vysshaya Shkola Publ., 1995, 304 p. (in Russian)
  11. Urazboev G.U. O modifitsirovannom uravnenii KdF s samomoglasovannym istochnikom, sootvetstvuyushij kratnym sobstvennym znacheniyam [On modified KdV equation with a self-consistent source corresponding to multiple eigenvalues].Doklady Akademii Nauk RUz, 2005, no. 5, pp. 11-14. (in Russian)
  12. Urazboev G.U., Xoitmetov U.A., Babadjanova A.K. Integration of the matrix modified Korteweg–de Vries equation with an integral-type source. Teoreticheskaya i Matematicheskaya Fizika, 2020, vol. 203, no. 3, pp. 734-746. https://doi.org/10.1134/S0040577920060033
  13. Frolov I.S. Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsej osi [Inverse scattering problem for a Dirac system on the whole axis]. Doklady Akademii Nauk SSSR, 1972, vol. 13, pp. 1468-1472. (in Russian)
  14. Khasanov A.B. Obratnaya zadacha teorii rasseyaniya dlya sistemy dvux nesamosopryajennyx differensial’nyx uravnenij pervogo poryadka [An inverse problem in scattering theory for a system of two first-order nonselfadjoint differential equations]. Doklady Akademii Nauk SSSR, 1984, vol. 277, no. 3, pp. 559-562. (in Russian)
  15. Khasanov A.B., Urazboev G.U. Metod resheniya uravneniya mKdF s samosoglasovannym istochnikom [Method for solving the mKdV equation with a self-consistent source]. Uzbek Math. journal, 2003, no. 1, pp. 69–75. (in Russian)
  16. Khasanov A.B., Hoitmetov U.A. Integrirovaniye uravneniya Kortevega-de Friza s nagrujennym chlenom v klasse bystroubyvayushix funksij [Integration of the Korteweg-de Vries equation with a loaded term in the class of rapidly decreasing functions]. Doklady Akademii Nauk RUz, 2021, 1, pp. 13-18. (in Russian)
  17. Ablowitz M.J., Kaup D.J., Newell A.C., Segur H. The Inverse Scattering Transform – Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics, 1974, vol. 53, no. 4, pp. 249-315. http://dx.doi.org/10.1002/sapm1974534249
  18. Chen X., Zhang Y., Liang J., Wang R. The 𝑁-soliton solutions for the matrix modified Korteweg-de Vries equation via the Riemann-Hilbert approach. Eur. Phys. J. Plus, 2020, 135, art. no. 574. https://doi.org/10.1140/epjp/s13360-020-00575-6
  19. Gardner C.S., Greene I.M., Kruskal M.D., Miura R.M. Method for Solving the Korteweg-de Vries Equation. Phys. Rev. Lett., 1967, no. 19, pp. 1095-1097. https://doi.org/10.1103/Phys RevLett.19.1095
  20. Hoitmetov U.A. Integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions. Uzbek Math. Journal, 2020, no. 4, pp. 44-52. https://doi.org/10.29229/uzmj.2020-4-6
  21. Khater A.H., El-Kalaawy O.H., Callebaut D.K. Backlund Transformations and Exact Solutions for Alfven Solitons in a Relativistic Electron–Positron Plasma. Physica Scripta, 1998, vol. 58, no. 6, pp. 545-548. https://doi.org/10.1088/0031-8949/58/6/001
  22. Kundu A., Sahadevan R., Nalinidevi L. Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability. J. Phys. A: Math. Theor., 2009, vol. 42, no. 11, art. no. 115213. https://doi.org/10.1088/1751-8113/42/11/115213
  23. Lax P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Comm. Pure and Appl. Math., 1968, vol. 21, no. 5, pp. 467-490. https://doi.org/10.1002/cpa.3160210503
  24. Mamedov K.A. Integration of mKdV Equation with a Self-Consistent Source in the Class of Finite Density Functions in the Case of Moving Eigenvalues. Russian Mathematics, 2020, vol. 64, pp. 66-78. https://doi.org/10.3103/S1066369X20100072
  25. Matsutani S., Tsuru H. Reflectionless Quantum Wire. Journal of the Physical Society of Japan, 1991, vol. 60, no. 11, pp. 3640-3644. https://doi.org/10.1143/JPSJ.60.3640
  26. Sasa N., Satsuma J. New-type of soliton solutions for a higher-order nonlinear Schrodinger equation. Journal of the Physical Society of Japan, 1991, vol. 60, no. 2, pp. 409-417. https://doi.org/10.1143/JPSJ.60.409
  27. Schief W. An infinite hierarchy of symmetries associated with hyperbolic surfaces. Nonlinearity, 1995, vol. 8, no. 1, pp. 1-9. https://doi.org/10.1088/0951-7715/8/1/001
  28. Tian S.F. Initial-boundary value problems of the coupled modified Kortewegde Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theo., 2017, vol. 50, no. 39, pp. 395-204. https://doi.org/10.1088/1751-8121/aa825b
  29. Urazboev G.U., Babadjanova A.K. On the Integration of the Matrix Modified Korteweg-de Vries Equation with a Self-Consistent Source. Tamkang Journal of Mathematics, 2019, vol. 50, no. 3, pp. 281-291. https://doi.org/10.5556/j.tkjm.50.2019.3355
  30. Wadati M. The exact solution of the modified Korteweg-de Vries equation. Journal of the Physical Society of Japan, 1972, vol. 32, p. 1681. https://doi.org/10.1143/JPSJ.32.1681
  31. Wu J., Geng X. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation. Communications in Nonlinear Science and Numerical Simulation, 2017, vol. 53, pp. 83-93. https://doi.org/10.1016/j.cnsns.2017.03.022
  32. Yajima N., Oikawa M. A class of exactly solvable nonlinear evolution equations. Pro. Theo. Phys., 1975, vol. 54, no. 5, pp. 1576—1577. https://doi.org/10.1143/PTP.54.1576
  33. Zhang D.-J., Wu H. Scattering of Solitons of Modified KdV Equation with Selfconsistent Sources. Commun. Theor. Phys., 2008, vol. 49, no. 4, pp. 809-814. https://doi.org/10.1088/0253-6102/49/4/02
  34. Zhang G., Yan Z. Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions. Physica D: Nonlinear Phenomena, 2020, vol. 410, art. no. 132521. https://doi.org/10.1016/j.physd.2020.132521

Full text (english)