«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol. 37

Exact Solutions to the Oberbeck–Boussinesq Equations for Shear Flows of a Viscous Binary Fluid with Allowance Made for the Soret Effect

Author(s)

N.V. Burmasheva, E.Yu Prosviryakov

Abstract

The paper considers an exact solution to the equations of thermal diffusion of a viscous incompressible fluid in the Boussinesq approximation with neglect of the Dufour effect for a steady shear flow. It is shown that the reduced system of constitutive relations is nonlinear and overdetermined. A nontrivial exact solution of this system is sought in the Lin–Sidorov–Aristov class. The resulting family of exact solutions allows one to describe steady-state inhomogeneous shear flows. This class generalizes the classical Couette, Poiseuille, and Ostroumov–Birikh solutions. It is demonstrated that the system of ordinary differential equations reduced within this class retains the properties of nonlinearity and overdetermination. A theorem on solvability conditions for the overdetermined system is proved; it is reported that, when these conditions are met, the solution is unique. The overdetermined system is solvable owing to the algebraic identity relating the horizontal velocity gradients, which are linear functions of the vertical coordinate. The constructive proof of the computation of hydrodynamic fields consists in the successive integration of the polynomials, the polynomial degree being dependent on the values of the boundary parameters.

About the Authors

Natalya Burmasheva, Cand. Sci. (Engineering), Research Fellow, Institute of Engineering Science UB RAS, 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation; Assoc. Prof., Ural Federal University, 19, Mir st., Ekaterinburg, 620002, Russian Federation, e-mail: nat_burm@mail.ru

Evgeniy Prosviryakov, Dr. Sci. (Phys.–Math.), Head of Sector, Institute of Engineering Science UB RAS, 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federation; Professor, Ural Federal University, 19, Mir st., Ekaterinburg, 620002, Russian Federation, e-mail: evgen_pros@mail.ru

For citation

Burmasheva N.V., Prosviryakov E.Yu. Exact Solutions to the Oberbeck–Boussinesq Equations for Shear Flows of a Viscous Binary Fluid with Allowance Made for the Soret Effect. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 37, pp. 17-30. https://doi.org/10.26516/1997-7670.2021.37.17

Keywords
viscous binary fluid, exact solution, Soret effect, shear flow, overdetermined system.
UDC
517.957, 517.958, 532.5.032
MSC
35N10, 76D05, 76D17
DOI
https://doi.org/10.26516/1997-7670.2021.37.17
References
  1. Aristov S.N. Eddy currents in thin liquid layers. Dr. Sci. Diss.. Vladivostok, 1990, 303 p. (in Russian)
  2. Aristov S.N., Prosviryakov E.Y. On laminar flows of planar free convection. Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 4, pp. 651–657. (in Russian)
  3. Aristov S.N., Prosviryakov E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theoretical Foundations of Chemical Engineering, 2016, vol. 50, no. 3, pp. 286-293. https://doi.org/10.1134/S0040579516030027
  4. Bekezhanova V.B., Goncharova O.N. On approaches to solving the problem of an interface deformation in a two-layer system with evaporation. Izvestiya of Altai State University, 2018, no. 1 (99), pp. 69-74. https://doi.org/10.14258/izvasu(2018)1-12 (in Russian)
  5. Birikh R.V. Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys., 1966, no. 7, pp. 43-44.
  6. Boussinesq J. Theorie analitique de la chaleur. Paris, GauthierVillars, 1903, vol. 2, 625 p.
  7. Burmasheva N.V., Prosviryakov E.Yu. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2019, vol. 23, no. 2, pp. 341–360. https://doi.org/10.14498/vsgtu1670
  8. Burmasheva N.V., Prosviryakov E.Yu. Thermocapillary convection of a vertical swirling liquid. Theoretical Foundations of Chemical Engineering, 2020, vol. 54, no. 1, pp. 230-239. https://doi.org/10.1134/S0040579519060034
  9. Burmasheva N.V., Prosviryakov E.Yu. Exact solution of Navier—Stokes equations describing spatially inhomogeneous flows of a rotating fluid. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 2, pp. 79–87. https://doi.org/10.21538/0134-4889-2020-26-2-79-87 (in Russian)
  10. Burmasheva N.V., Prosviryakov E.Yu. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters. The Bulletin of Irkutsk State University. Series Mathematics, 2020 vol. 32, pp. 33-48. https://doi.org/10.26516/1997-7670.2020.32.33 (in Russian)
  11. Burmasheva N.V., Prosviryakov E.Yu. On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect. Journal of King Saud University – Science, 2020, vol. 32, iss. 8, pp. 3364-3371. https://doi.org/10.1016/j.jksus.2020.09.023
  12. Chandra Reddy P., Raju M.C., Raju G.S.S. MHD natural convective heat generation/absorbing and radiating fluid past a vertical plate embedded in porous medium–an exact solution. Journal of the Serbian Society for Computational Mechanics, 2018, vol. 12, no. 2, pp.106-127. https://doi.org/10.24874/jsscm.2018.12.02.08
  13. Dufour L. Ueber die diffusion der gase durch por¨ose w¨ande und die sie begleitenden temperaturver¨anderungen. Arc. Phys. Nat. Sci. Geneve, 1872, vol. 45, pp. 490-492. https://doi.org/10.1002/andp.18732240311
  14. Gershuni G.Z., Zhukovitskii E.M. Convective stability of incompressible fluids. Jerusalem, Keter Publications/Wiley, 1976, 330 p.
  15. Goncharova O.N., Rezanova E.V., Lyulin Y.V., Kabov O.A. Modeling of two-layer liquid-gas flow with account for evaporation. Thermophysics and Aeromechanics, 2015, vol. 22, no. 5, pp. 631-637. https://doi.org/10.1134/S086986431505011X
  16. Lavrenteva O. M., Holenberg Y., Nir A. Marangoni and natural convection in a horizontal layer of viscoplastic fluid with concentration dependent yield stress. Exact analytical solutions. Microgravity Sci. Technol., 2009, vol. 21, pp. 59–65. https://doi.org/10.1007/s12217-009-9127-7
  17. Lin C.C. Note on a class of exact solutions in magneto-hydrodynamics. Archive for Rational Mechanics and Analysis, 1958, vol. 1, pp. 391-395.
  18. Oberbeck A. Uber die warmeleitung der flussigkeiten bei der berucksichtigung der stromungen infolge von temperaturdifferenzen. Annal. Phys. Chem., 1879, bd. 7, no. 6, pp. 271-292.
  19. Ostroumov G.A. Free convection under the condition of the internal problem. Washington, NACA Technical Memorandum 1407, National Advisory Committee for Aeronautics, 1958.
  20. Sidorov A.F. Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory. Journal of Applied Mechanics and Technical Physics, 1989, vol. 30, no. 2, pp. 197-203. https://doi.org/10.1007/BF00852164
  21. Shefer I.A. Influence of the transverse temperature drop on the stability of twolayer fluid flows with evaporation. Fluid Dynamics, 2019, vol. 54, no. 5, pp. 603-613. https://doi.org/10.1134/S0015462819040098
  22. Soret C. Sur l’´etat d’´equilibre que prend au point de vue de sa concentration une dissolution saline primitivement homoh´ene dont deux parties sont portees a des temp´eratures diff´erentes. Arch. Sci. Phys. Nat., 1879, vol. 2, pp. 48-61.
  23. Umavathi J.C., Sheremet M.A., Patil S.L. Soret effects on the mixed convection flow using Robin boundary conditions. Heat Transfer-Asian Research, 2019. https://doi.org/10.1002/htj.21604

Full text (english)