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Exact Solutions to the Oberbeck—Boussinesq
Equations for Shear Flows of a Viscous Binary Fluid
with Allowance Made for the Soret Effect *
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L Institute of Engineering Science of UB RAS, Ekaterinburg, Russian Federation

Abstract. The paper considers an exact solution to the equations of thermal diffusion
of a viscous incompressible fluid in the Boussinesq approximation with neglect of the
Dufour effect for a steady shear flow. It is shown that the reduced system of constitutive
relations is nonlinear and overdetermined. A nontrivial exact solution of this system
is sought in the Lin-Sidorov—Aristov class. The resulting family of exact solutions
allows one to describe steady-state inhomogeneous shear flows. This class generalizes
the classical Couette, Poiseuille, and Ostroumov—Birikh solutions. It is demonstrated
that the system of ordinary differential equations reduced within this class retains the
properties of nonlinearity and overdetermination. A theorem on solvability conditions
for the overdetermined system is proved; it is reported that, when these conditions
are met, the solution is unique. The overdetermined system is solvable owing to the
algebraic identity relating the horizontal velocity gradients, which are linear functions
of the vertical coordinate. The constructive proof of the computation of hydrodynamic
fields consists in the successive integration of the polynomials, the polynomial degree
being dependent on the values of the boundary parameters.

Keywords: viscous binary fluid, exact solution, Soret effect, shear flow, overdetermined
system.
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1. Introduction

The Boussinesq approximation is known to be used in studying con-
vective flows of binary fluids [6; 14; 18]. The study of the properties of
the solutions to the Oberbeck—Boussinesq equations describing thermal
diffusion flows is complicated by the Soret and Dufour thermodynamic cross
effects between the temperature field and the field of dissolved substance
concentration [13;22]. This is mathematically expressed in the coupled
nature of the equations of heat transfer and concentration. A class of exact
solutions of the Navier—Stokes equations for describing the flows of incom-
pressible binary fluids with allowance made for both effects was proposed
in [3] The idea that the Dufour parameter, due to its smallness, can be
neglected in the description of fluid flows dominates in the current scientific
literature [11;12;15;16;23]. Exact solutions to the Oberbeck—Boussinesq
equations are sought based on this physical assumption.

The finding of exact solutions to the thermal diffusion equations has
started fairly recently from the study of unidirectional (stratified) flows
in infinite plane and infinitely long cylindrical channels [4;21]. Various
modifications of the Ostroumov—Birikh family are used in the construction
of exact solutions [5;19]. In other words, the exact solutions whose velocity
fields are described by the exact Couette solution are studied, and the hori-
zontal (longitudinal) gradients of temperature, pressure, and concentration
are taken into account.

For different applications, it is necessary to have a collection of exact
solutions characterizing the distribution of hydrodynamic fields in shear
flows (the vertical component of the velocity vector is zero) [7—11]. In this
case, the Oberbeck—Boussinesq equation system is overdetermined. Five
unknown functions (two velocity vector components, pressure, tempera-
ture, and concentration) are computed from six equations (the Oberbeck-
—Boussinesq system and the equations of incompressibility, heat conduction,
and concentration). In the study of shear flows, the inhomogeneity of the
fields of temperature, pressure, and concentration can induce an inhomo-
geneous velocity field [1;3;17;20]. Note that, according to the Onsager
principle, the inverse effect is true [1;3;17;20].

The solvability of the overdetermined systems describing inhomogeneous
flows, which resulted from the reduction of the Navier—Stokes equations in
various force fields, was studied in [9;10]. An exact solution was con-
structed in the Lin-Sidorov—-Aristov class [1;17;20]. It describes spatially
inhomogeneous vortex flows. Investigations for inhomogeneous shear flows
of viscous binary fluids have yet to be started. The study of fluid flows with
a homogeneous two-dimensional velocity field depending only on the trans-
verse coordinate (two-dimensional Couette flow), was started in [11]. The
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EXACT SOLUTIONS TO THE OBERBECK—BOUSSINESQ EQUATIONS 19

presented mathematical model describes the convection of a binary fluid in
view of the Soret effect in an exact statement. It was shown in [11] that, in
a steady-state flow of a fluid with a dissolved substance, there was a more
pronounced stratification of hydrodynamic fields as compared to Marangoni
heat convection first discussed in [2]. Besides, the exact solutions reported
in [8] and taking into account the spatial inhomogeneity of velocities also
describe hydrodynamic fields with a greater number of stratification points
than in a homogeneous velocity field. Thus, a fluid flow structure (first
of all, in the velocity field) is affected by the spatial inhomogeneity of
hydrodynamic fields, boundary conditions, and flow-inducing forces.

This paper, applying the technique proposed in [1;11;17;20], studies
the solvability of the Oberbeck—Boussinesq equation system for describing
the spatially inhomogeneous thermal-diffusion shear flows of incompressible
binary fluids in the Lin—Sidorov—Aristov class with allowance made for the
Soret effect.

2. Problem Statement

Steady-state shear flows of binary viscous incompressible fluids are de-
scribed by the following relationships [11]:

SVa L OVe 0P (V. Ve OV,
* N Ox? Oy? 022 )’

oz "oy T ox T

av, oV, oP [V, oV, &,
Vw@:):—i_vy(?y__ay y<8x2+8y2+822 ’
oP av, IV,
i T z 'y
9z g (61 + 520) ) o + 8y Oa

T, 0T o*T  9*T 9T
"oz y(?y_x(ax2 + Oy? * 622)’
v oC v oc d 0’Cc  9*C  o*C d 0’T  0°T 9°T
"oz * Yoy <8:c2 * 0y? * 822> e (83:2 * 0y? * 8z2>'
(2.1)
Here, V (z,y,2) = (V4,V},0) is fluid velocity; g is free fall acceleration;
B1, B2 are the thermal and concentration expansion coeflicients, respec-
tively; T (x,y,z) is temperature deviation from the equilibrium state;
C (z,y, #) is the deviation of the concentration of the light phase (admix-
ture) in a binary fluid mixture from the equilibrium value; P (z,y, 2) is
deviation from hydrostatic pressure, normed to the average constant fluid
density p; v is kinematic fluid viscosity; x is the temperature conductivity
coefficient; d is the diffusion coefficient; « is the thermal diffusion coefficient
(the Soret parameter) [22].
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The quadratically nonlinear system (2.1) is overdetermined since four
functions of the five equations (velocities V,, V}, , pressure P, temperature
T, and concentration C') need to be determined. A nontrivial solution to
system (2.1) will be sought in the Lin-Sidorov-Aristov class, where the
required unknowns are represented by complete linear forms in terms of
coordinates [3;9;10;17]:

Vi=U@R)+wm(2)e+u(2)y, Vy=V(2)+v(2)z+v2(2)y,

P=P(2)+Pi(z)z+Pa(2)y, T=To(z)+Ti(2)x+Ta(z)y,
C=Co(z)+C1(2)x+Cy(2)y. (2.2)

Having substituted the exact solution (2.2) into system (2.1), applying
the method of undetermined coefficients, we arrive at a system of ordi-
nary differential equations, which, for the convenience of analysis, is here
presented as follows:

2 " "
U] + U2V = vuy,  ULU2 + U2V2 = VUg,

vy 4 vivg = vuf,  ugu + 03 = vl up + vy = 0; (

uTy + 01Ty = XTy,  uaTi + vl = xTy; (

u1Ch + 010y = dCY + adTy,  usCy + v2Co = dCY + adTy; (
Pl =g (B1T1 + 2C1), Py =g(B1Ta + $2C2); (

wU 4+ uwV =—P +vU", viU+ vV =—-P,+vV"; (

UT, + VT = XT\!, UCy+VCy=dCl + adT}; (

Py =g (81T + B2Co) - (2.9

The prime in system (2.3)-(2.9) marks derivation with respect to the vari-
able z. In the transition from system (2.1) to system (2.3)-(2.9) the prop-
erty of overdetermination is inherited, i.e. we have sixteen equations for
the determination of fifteen nonlinear coefficients of the linear forms in
Eq. (2.2). Subsystem (2.3) alone has a “redundancy” of equations with
respect to the number of unknowns. Thus, if it proves possible to find
a nontrivial uultaneous solution, i.e. the one satisfying all the equations
of the overdetermined subsystem (2.3), successive integration can yield a
solution to any of the subsystems (2.4)-(2.9).

3. Analyzing the Solvability of the Equation System

The existence of a nontrivial exact solution of system (2.3)-(2.9) is
ensured by the fulfilment of the following theorem.
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Theorem 1. The overdetermined system (2.3) has a nontrivial exact so-
lution in class (2.2), which is an exact solution of system (2.1), if and only
if the spatial accelerations uyi,us,v1 and ve are described by the functions

u1 = ucos¥sint = —vg, ug = u cos® Y, v =-—u sin? 9,
where u is a function satisfying the equation u” = 0 and ¥ is some number.

Proof. Transform subsystem (2.3) by reducing the number of equations in
it. To do this, use the relationship u; + vo = 0 and express the spatial ac-
celeration v9 via the component uq as v9 = —uq. Substitute this expression
into all the differential equations of subsystem (2.3). This yields

ut +ugvy = vuf,  ud Fuguy = —vuf, wh =0, v =0. (3.1)

It follows from the last two equations in system (3.1) that the compo-
nents vq, uo are linear functions,

ug = b1z 4+ ba, vy = b3z + by. (3.2)

Besides, from the first two equations of system (3.1) it follows that the
spatial acceleration u; linearly depends on the variable z,

u] = bsz + bg. (33)
Herewith, solutions (3.2),(3.3) must satisfy the algebraic consistency con-
dition

u? + uguy = 0. (3.4)

The substitution of Eqgs. (3.2) and (3.3) into the condition expressed
by Eq. (3.4) results in the following system of conditions imposed on the
coefficients b1, ba, b3, b4, b5 and bg :

b2+ bib3 =0, 2bsbg + biby + babs = 0, b2 + boby = 0. (3.5)

The solutions of system (3.5) for the spatial accelerations represented by
Egs. (3.2), (3.3) are particular cases of the following representation:

up = ucos¥sing, wug=ucos’V, vy = —usin®V, (3.6)

where ¥ is some number and the function u satisfies the equation u” = 0,
i.e. it is representable as u = c1z + ¢s .

The substitution of the solution for the spatial accelerations represented
by Eq. (3.6) into the consistency condition (3.4) gives the true identity

u? + ugvy = (ucosIsind)? + (ucos?¥) (—usin® ) = 0.

Consequently, the overdetermined system (2.3) has a simultaneous solution.
Thus, the theorem has been constructively proved. ]
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4. Constructing an Exact Solution

The above exact solutions for the spatial accelerations ui, v1, andve en-
able us to find the unknown functions U, V, T}, C; and P; (i = 0, 1,2) defining
the hydrodynamic fields.

Theorem 2. If the simultaneous solution of the overdetermined sys-
tem (2.3) has the form of Eq. (3.6), the solution of Eqs. (2.3)-(2.9) does
exist.

Proof. Transform Egs. (2.4) and (2.5) enabling us to determine, with
Eq. (3.6) taken into account, the longitudinal (horizontal) gradients 77, T»
of the temperature field T" and the gradients C1,Csy of the concentration
field C. The substitution gives

T} = ucos ¥ sin 9Ty — u sin? 9T,

XTy = u cos? 9T} — wcos ¥ sin 975,
dCY + adT}]' = ucos ¥ sin 9C; — usin? 9Cs,
dCY + adTy = ucos® 9C| — u cos ¥ sin ¥Cy. (4.1)

Multiply the first equation in system (4.1) by cos?¥ and subtract the
second equation multiplied by sin® from it. After double integration, we
obtain the relationship

cos 911 — sin 9Ty = Y12 + Yo. (4.2)

Hereinafter, the coefficients of the form v; (i € N) are integration constants.
It follows from the third and fourth equations in system (4.1) that

cos ¥Cq + acos 9T — sin¥Cy — acsin 9Ts = 32 + 4. (4.3)

We express the gradients Cy, Ty from the relations (4.2), (4.3). To do this,
we represent system (4.2), (4.3) in the matrix form as

< sin 7 0 ><T2>:< cosVT] — vz — 72 ) (4.4)
asind sind Cy acosIT) + cosVCy —y3z —v4 ) ’
The structure of the solution of the matrix equation (4.4) depends on the
value of the coefficient sin .

Let us first consider the particular case of ¥ being such that sin? = 0.
Then the left parts of Eq. (4.4) are identically equal to zero and system (4.4)
becomes

Ty —mz—72=0, al1+C;—v32—71=0.

Hence, the solution is
T =mz+7, Ci=-ali+yz+yi=(y3—an)z+(ya—ay). (4.5)
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The obtained solutions (4.5) are substituted into the second equation of
system (4.1). In view of Eq. (3.6), when sin? = 0, Egs. (2.6), (2.7) acquire
the form

1
XT2” = uT17 Cé/ - OcTé/ + 8@601, P{ - g (ﬁlTI + 5201) ?

Py =g(BiTo+ B2Co), vU"=Vu+P, vV"=P. (4.6)

Expressions (4.5) and (3.6) are substituted into Eq. (4.6). Successive
integration of the ordinary differential equations of this tenth-order system
results in a polynomial solution where the gradient P; of the pressure field is
a second-order polynomial, the gradient P is a fifth-order one, the gradient
Ts of the temperature field and the gradient Cs of the concentration field
are fourth-order polynomials, and the velocities U and V are tenth- and
seventh-order ones, respectively.

We now return to the general case of ¥ being such that sin4 # 0. This
means that the determinant D = sin? 9 of system (4.4) is nonzero; therefore,
system (4.4) is uniquely solvable,

) 1 —sind 0 —cosVT1 + 712 + 72
Co ) gn29 \ asind —sind —acos¥l) —cos¥Cr +v3z+v4 )

Ty = ctgdTy + 5" 02 0y Z gy + QN T EF (@0 =)
sin 9 sin 9
(4.7)
Substituting Eq. (4.7) first into the first equation of system (4.1), we have
in
T = 225 (112 +72) w. (4.8)

With Eq. (4.8) taken into account, the transformation of the third equation
of system (4.1) gives

y  sind

[(—am (x +d) +73x) 2 + (—ay2 (x +d) +yax)]u.  (4.9)

Integrating twice Eqgs. (4.8) and (4.9), we arrive at the following solution
for the longitudinal (horizontal) gradients 77, Ci:

sin 7
12y

T = (017124 +2(c1y2 + com) 23 + 6egyez? + V52 + 76) )

_ sind
12yd
+2[e1 (—aye (x + d) + yax) + 2 (—ay1 (x + d) + y3x)] 22+

+6¢o (—ay2 (X + d) + yax) 2% + 72 + 78] - (4.10)

1 [e1 (—am (x +d) +v3x) 2"+
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Substituting Eq. (4.10) into the linear relations (4.7), we find the form of
the remaining gradients of the temperature and concentration fields. Note
that, as distinct from the above-discussed case sin 9 = 0, all the components
Ty,T5,C1,Cy of the representation expressed by Eq. (2.2) are fourth-order
polynomials. Then, from the obtained polynomials, the form of the exact
solution for the gradients P, and P» of the pressure field is determined by
single integration of Eq. (2.6).

Let us now turn to the integration of subsystem (2.7) enabling us to
find the form of the homogeneous components U and V of the velocity
field. The substitution of Eq. (2.7) for the spatial accelerations uy, ug, vy
and vy into Eq. (3.6) gives the following system of equations:

Uucosdsing + Vucos? 9 = —P, + vU”,

—Uusin?® — Vucosdsing = —Py + vV". (4.11)

We multiply the first equation in system (4.11) by sin and the second
one by cos?; summing the resulting relations, we obtain the equation

sintv Py + cos P
v sin ’

U" = —ctgyV" + (4.12)
By a double integration of Eq. (4.12) taking into account the expressions
obtained for the gradients P;, P», we arrive at a relation between the com-
ponents U and V of the velocity field represented by Eq. (2.2). Note that
the resulting dependence has a linear form and that the coefficients at
the velocities U and V in it are constant. The obtained exact solution is
then substituted into the second equation of system (4.11) thus yielding an
equation for the velocity V. Solving this equation in view of the above-
mentioned linear relationship between the components U and V', we can
find an exact solution for the velocity U.

In what follows, we find solutions to Eq. (2.8), which gives the form of the
background components of the temperature field T' and the concentration
field C'. Similarly to solving system (4.2), (4.3), to find a solution to subsys-
tem (2.8),we represent it as an inhomogeneous matrix algebraic equation
with respect to the second derivatives of the background components Cjy
and Tp of the linear forms in Eq. (2.2),

0 X Cél o UT1+VT2 (4 13)

d ad ) \UCi+VCy )” '
Note that the determinant of the matrix of the coefficients in the left-
hand side of system (4.13) is nonzero; therefore, Eq. (4.13) is solvable with

respect to the derivatives of background temperature Ty and background
concentration Cy,

C(,)/ . i —ad X UTl + VTQ (4 14)
)~ xd\ 4 o)\vci+ve, ) '
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The right-hand side of Eq. (4.14) contains the known polynomial functions;
consequently, Eq. (4.14) can be easily integrated.

A solution to subsystem (2.9) is found thereafter. The background
pressure Py results from the integration of the already known polynomial
function. Hence, the pressure P, itself is a polynomial. As before, the
result of this integration can be easily found by the known inhomogeneity
contained in the right-hand side of Eq. (2.9). These solutions are rather
lengthy and omitted here. O

To summarize the foregoing, it is worth noting that the algorithm of
solving the overdetermined system (2.3)-(2.9) is reducible to the integra-
tion of the polynomial functions. Such integration is known to be always
feasible. Consequently, if a solution of the form of Eq. (3.6) is obtained,
the solution of the other subsystems of the overdetermined system under
study does exist.

5. Result Interpretation

The obtained exact solutions seem to be of great value for theoretical and
applied research. Without constraining the generality of the reasoning, we
illustrate the novelty of the solution class by studying the velocity field. To
be specific, we will consider Marangoni convection in an infinite horizontal
fluid layer, which, for a steady-state flow, is determined by the boundary
conditions

oT oC oT oC

@y h) = —o o — 5, 2C (g h) = —o1 e — oy
TZV ('Tvyu ) Ulal' O-Qamv 77‘/;/ (ajvyv ) Ulay 028y7

T (z,y,0) = Ay, T (x,y,h) =19+ Buz,
C($7y70):07 C(Jv,y,h):D:U—{—Ey,
P(z,y,h) =0, Vy(x,y,h)=Wcosa+Qy, V,(z,y,h)=Wsina.

Here, n is the dynamic viscosity of the fluid. The quantity h determines
the thickness of the extensive horizontal fluid layer under study; A, B, D,
E, W, a, 9, Q are the parameters specified at the fluid layer boundaries.

The deduction of these conditions is similar to the relations obtained
in [2;8]. The analysis of the velocity field shows that specific kinetic energy
can have up to six zero values (Fig. 1).

This testifies to the presence of countercurrents and a cellular nature of
the flow caused by the inhomogeneous velocity distribution, the interaction
of the pressure, temperature, and concentration fields and their effect on
fluid velocity. The obtained stratification of the velocity field is much more
pronounced than that reported in [2;8]. It was shown in [2;8] that the
number of stagnation points (zeros of kinetic energy) does not exceed four.
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Figure 1. Specific kinetic energy profile T =3 (V,, + Vy)

6. Conclusion

The paper has studied the overdetermined system of nonlinear partial
equations that describes a steady-state shear flow of a binary viscous in-
compressible fluid. The study has shown the existence of a nontrivial
exact solution of the reduced Navier—Stokes equations in the Boussinesq
approximation (the Oberbeck—Boussinesq system), supplemented by the
incompressibility, heat conduction, and concentration equations. The found
polynomial exact solution satisfying the algebraic consistency condition
belongs to the Lin—Sidorov—Aristov class. This solution describes con-
vection and advection (horizontal convection) in fluid moving beyond the
Coriolis field and in the rotating equatorial zone of the World Ocean in
the approximation of the f-plane. The formulas presented in the paper
describe the stratification of hydrodynamic fields from the reference values.
Of special interest is the study of the velocity field, which illustrates the
existence of several stagnation points and countercurrents in fluid flow,
particularly in sea water.
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Tounsbie perienus ypaBHenuii Ob6epbeka — Byccunecka jijist
CABUTOBBIX TE€YEHWIl BA3KOl OMHAPHON >XUJKOCTU C Yy4YE€TOM

adpPpekrTa Cope
H.B. Bypmamesa!, E. FO. IIpocsupsikos!

L Hnemumym mawunosedenus YpO PAH, Examepunbype, Poccutickas Pedepa-
YuA

Amnsporanusi.  PaccMmorpeHo TO4YHOe pellieHre ypaBHeHHIT TepMoauddy3un BI3KOi
HECXKUMaEMOH KUJIKOCTU B mpubimkeHnn byccuaecka mpu npenebpexkennu 3pdHeKToM
Hiodopa jyst ycraHoBHBIIErocsi cBUroBoro redenusi. O603Ha4E€HO, UTO PeylUpPOBAH-
Hagd CUCTEMa OIIPEIEIIAIONNX COOTHOIICHUN ABIACTCS HEJIMHEIHON U IepeoIpeIe/ICHHOM’.
HerpusnasibHoe TOYHOE pellleHne JAHHON CUCTEeMBI uIeTcs B Kjaacce JIuns — Cumopo-
Ba — ApucroBa. [losydennoe ceMelCTBO TOYHBIX DPEIIEHUH MO3BOJIAET OINUCHLIBATDL yCTa-
HOBWUBIIINECS] CABUTOBBIE HEOIHOPOJHBIE TedeHUsi. JlaHHBIN KJacc MO3BOJIsieT 0600IUTE
kitaccuueckue pemnenusi Kysrra, [lyazeiting u OcrpoymoBa — Bupuxa. Ilokazano, dro
penynupoBaHHAS B PAMKAX 9TOTO KJIACCA CHCTEMa OOBIKHOBEHHBIX JInudhepeHnaaIbHbIX
YPaBHEHUI COXpaHSIET CBOMCTBA HEJIMHEHHOCTH W mepeonpejeneHnoctr. Jlokaszana Teo-
peMa 006 yCJIOBHSIX Da3PENIMMOCTH II€PEOIPEJICJICHHOM CUCTEMBI, U ITOKA3aHO, UTO IIPH
UX BBIIOJIHEHUN DeIIeHNEe eINHCTBEHHO. PellleHne nepeonpeeseHHON CUCTEMBI BO3MOXK-
HO Gs1aromaps ajarebpamdecKoMy TOXKIECTBY, CBSI3bIBAIOIIEE TOPU3OHTABHBIE TPATHEHTHI
CKOPOCTE€l, KOTOPbIE SABJISIIOTCS JTUHEHHBIMU (DYHKIUAME OT BEPTHKAJIBHON KOOD/IMHATHL.
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KoncrpykTrBHOE 10KA3aTEIHCTBO BEIUUCIEHUS THAPOINHAMUIECKUX TTOJIEH 3aKII09aeTCSI
B II0CJIEIOBATEJIbHOM WHTEIPUPOBAHNHU ITOJIMHOMOB, IIPUYEM CTENEeHb OJINHOMOB 3aBUCHT
OT 3Ha4YeHUI KpaeBBbIX ITapaMeTpPOB.
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