«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2020. Vol. 31

The Optimal Rehedging Interval for the Options Portfolio within the RAPM, Taking into Account Transaction Costs and Liquidity Costs

Author(s)
M. M. Dyshaev, V. E. Fedorov
Abstract

Using the approach of L.C.G. Rogers and S. Singh, we added liquidity costs accounting to the model with risk adjusted pricing methodology (RAPM), generalized by M. Jandacka and D. Sevcovic. This model minimizes the risk of transaction costs growth from the frequent delta hedging, and reduces the risk of the portfolio value changes (hedging error) due to rare rebalances. Numerical solution for price of option combination ”short strangle” is found. An optimal interval of time for delta hedging is considered. Corresponding results are presented in the form of graphs characterizing the dependence of the interval on the current price of the underlying asset and on the time remaining until the expiration of options.

About the Authors

Mikhail Dyshaev, Cand. Sci. (Phys.–Math.), Chelyabinsk State University, 129, Bratyev Kashirinikh St., Chelyabinsk, 454001, Russian Federation, tel.: (351)7997235, e-mail: mikhail.dyshaev@gmail.com

Vladimir Fedorov, Dr. Sci. (Phys.–Math.), Prof., Chelyabinsk State University, 129, Bratyev Kashirinikh St., Chelyabinsk, 454001, Russian Federation, tel.: (351)7997235, e-mail: kar@csu.ru

For citation

Dyshaev M.M., Fedorov V.E. The Optimal Rehedging Interval for the Options Portfolio within the RAPM, Taking into Account Transaction Costs and Liquidity Costs. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 31, pp. 3-17. https://doi.org/10.26516/1997-7670.2020.31.3

Keywords
rehedging interval, non-linear option pricing model, RAPM, transaction costs, liquidity cost, delta hedging
UDC
517.957, 336.76
MSC
91G80, 91G20, 91G60
DOI
https://doi.org/10.26516/1997-7670.2020.31.3
References

1. Almgren R., Chriss N. Optimal execution of portfolio transactions. Journal of Risk, 2001, vol. 3, no. 2, pp. 5-39. http://dx.doi.org/10.21314/JOR.2001.041

2. Almgren R., Li T.M. Option hedging with smooth market impact. Mark. Microstructure Liq., 2016, vol. 02, no. 01, pp. 1650002. https://doi.org/10.1142/S2382626616500027.

3. Ankudinova J., Ehrhardt M. On the numerical solution of nonlinear Black – Scholes equations. Computers & Mathematics with Applications, 2008, vol. 56, no. 3, pp. 799-812. https://doi.org/10.1016/j.camwa.2008.02.005

4. Arenas A. J., Gonzalez-Parra G., Caraballo B.M. A nonstandard finite difference scheme for a nonlinear Black — Scholes equation. Mathematical and Computer Modelling, 2013, vol. 57, no. 7, pp. 1663-1670. https://doi.org/10.1016/j.mcm.2011.11.009

5. Bank P., Soner H.M., Voß M. Hedging with temporary price impact. Mathematics and Financial Economics, 2017, vol. 11, no. 2, pp. 215-239. http://dx.doi.org/10.1007/s11579-016-0178-4 

6. Barles G., Soner H.M. Option pricing with transaction costs and a nonlinear Black —Scholes equation. Finance and Stochastics, 1998, vol. 2, no. 4, pp. 369-397. http://dx.doi.org/10.1007/s007800050046 

7. Bertsimas D., Lo A.W. Optimal control of execution costs. Journal of Financial Markets, 1998, vol. 1, no. 1, pp. 1-50. https://doi.org/10.1016/S1386-4181(97)00012-8 

8. Black F., Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy, 1973, vol. 81, no. 3, pp. 637-654. http://dx.doi.org/10.1086/260062 

9. Bordag L.A. Study of the risk-adjusted pricing methodology model with methods of geometrical analysis. Stochastics, 2011, vol. 83, no. 4-6, pp. 333-345. https://doi.org/10.1080/17442508.2010.489642

10. Boyle P.P., Vorst T. Option replication in discrete time with transaction costs. The Journal of Finance, 1992, vol. 47, no. 1, pp. 271-293. http://dx.doi.org/10.1111/j.1540-6261.1992.tb03986.x

11. Clewlow L., Hodges S. Optimal delta-hedging under transactions. costs Journal of Economic Dynamics and Control, 1997, vol. 21, no. 8, pp. 1353-1376. https://doi.org/10.1016/S0165-1889(97)00030-4 

12. Cruz J.M.T.S., Sevcovic D. Option pricing in illiquid markets with jumps. Applied Mathematical Finance, 2018, vol. 25, no. 4, pp. 389-409. https://doi.org/10.1080/1350486X.2019.1585267

13. Cvitanic J., Karatzas I. Hedging and portfolio optimization under transaction costs: a martingale approach. Mathematical Finance, 1996, vol. 6, no. 2, pp. 133-165. http://dx.doi.org/10.1111/j.1467-9965.1996.tb00075.x 

14. Davis M.H.A., Norman A.R. Portfolio selection with transaction costs. Mathematics of Operations Research, 1990, vol. 15, no. 4, pp. 676-713. https://doi.org/10.1287/moor.15.4.676

15. During B., Fournie M., Jungel A. Convergence of a high-order compact finite difference scheme for a nonlinear Black — Scholes equation. M2AN, Math. Model. Numer. Anal., 2004, vol. 38, no. 2, pp. 359-369. http://dx.doi.org/10.1051/m2an:2004018 

16. Dyshaev M.M., Fedorov V.E. Comparing of some sensitivities (Greeks) for nonlinear models of option pricing with market illiquidity. Mathematical notes of NEFU, 2019, vol. 26, no. 2, pp. 94-108. https://doi.org/10.25587/SVFU.2019.102.31514 

17. Gatheral J., Schied A. Handbook on systemic risk. Ed. by J.A. Langsam, Jean-Pierre Fouque. Cambridge, 2013, pp. 579-599. http://dx.doi.org/10.2139/ssrn.2034178 

18. Heider P. Numerical methods for non-linear Black — Scholes equations. Applied Mathematical Finance, 2010, vol. 17. pp. 59-81. http://dx.doi.org/10.1080/13504860903075670 

19. Jandacka M., Sevcovic D. On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. Journal of Applied Mathematics, 2005, vol. 2005, no. 3, pp. 235-258. http://dx.doi.org/10.1155/JAM.2005.235 

20. Kabanov Y., Safarian M. Markets with transaction costs. Mathematical theory. Springer Finance. Berlin, Heidelberg : Springer, 2010. http://dx.doi.org/10.1007/978-3-540-68121-2 

21. Kabanov Y.M., Safarian M.M. On Leland’s strategy of option pricing with transactions costs. Finance and Stochastics, 1997, vol. 1, no. 3, pp. 239-250. http://dx.doi.org/10.1007/s007800050023 

22. Leland H.E. Option pricing and replication with transactions costs. The Journal of Finance, 1985, vol. 40, no. 5, pp. 1283-1301. http://dx.doi.org/10.1111/j.1540-6261.1985.tb02383.x

23. Obizhaeva A.A., Wang J. Optimal trading strategy and supply/demand dynamics. Journal of Financial Markets, 2013, vol. 16, no. 1, pp. 1-32. https://doi.org/10.1016/j.finmar.2012.09.001 

24. Rogers L.C.G., Singh S. The cost of illiquidity and its effects on hedging. Mathematical Finance, 2010, vol. 20, no. 4, pp. 597-615. http://dx.doi.org/10.1111/j.1467-9965.2010.00413.x 

25. Soner H.M., Shreve S.E., Cvitanic J. There is no nontrivial hedging portfolio for option pricing with transaction costs. Ann. Appl. Probab., 1995, vol. 5, no. 2, pp. 327-355. 

26. Toft K.B. On the mean-variance tradeoff in option replication with transactions costs. The Journal of Financial and Quantitative Analysis, 1996, vol. 31, no. 2, pp. 233-263. http://dx.doi.org/10.2307/2331181

27. Whalley A.E., Wilmott P. An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Mathematical Finance, 1997, vol. 7, no. 3, pp. 307-324. http://dx.doi.org/10.1111/1467-9965.00034


Full text (english)