## List of issues > Series «Mathematics». 2018. Vol. 25

##
Existence of periodic solution to one dimensional free boundary problems for adsorption phenomena

Toyohiko Aiki, Dr. Sci. (Phys.–Math.), Prof., Department of Mathematics, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan, e-mail: aikit@fc.jwu.ac.jp

Naoki Sato, Dr. Sci. (Phys.–Math.), Assoc. Prof., Division of General Education, National Institute of Technology, Nagaoka College, 888, Nishikatakai, Nagaoka, Niigata, 940-8532, Japan, e-mail: naoki@nagaoka-ct.ac.jp

Aiki T., Sato N. Existence of Periodic Solution of One Dimensional Free Boundary Problem for Adsorption Phenomena. *The Bulletin of Irkutsk State University. Series Mathematics*, 2018, vol. 25, pp. 3-18. https://doi.org/10.26516/1997-7670.2018.25.3

1. Aiki T. Periodic stability of solutions to two-phase Stefan problems with nonlinear boundary condition. *Nonlinear Anal*. TMA., 1994, vol. 22, pp. 1445–1474.

2. Aiki T., Kumazaki K. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process. *Physica B*, 2012, vol. 407, pp. 1424– 1426.

3. Aiki T., Kumazaki K. Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process. *Adv. Math. Sci. Appl.*, 2011, vol. 21, pp. 361–381.

4. Aiki T., Kumazaki K., Murase Y., Sato N. A two-scale model for concrete carbonation process in a three dimensional domain. *Surikaisekikenkyusho Kokyuroku*, 2016, no. 1997, pp. 133–139.

5. Aiki T., Murase Y., Sato N., Shirakawa K. A mathematical model for a hysteresis appearing in adsorption phenomena. *Surikaisekikenkyusho Kokyuroku*, 2013, no. 1856, pp. 1–11.

6. Aiki T., Murase Y. On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena. *J. Math. Anal. Appl.*, 2017, vol. 445, pp. 837–854.

7. Damlamian A., Kenmochi N. Periodicity and almost periodicity of solutions to a multi-phase Stefan Problem in several space variables, *Nonlinear Anal. TMA.*, 1988, vol. 12, pp. 921–934.

8. Kumazaki K. Continuous dependence of a solution of a free boundary problem describing adsorption phenomenon for a given data. *Adv. Math. Sci. Appl.*, 2016, vol. 25, pp. 289–305.

9. Kumazaki K. Measurabllity of a solution of a free boundary problem describing adsorption phenomenon. *Adv. Math. Sci. Appl.*, 2017, vol. 26, pp. 19–27.

10. Kumazaki K., Aiki T. Uniqueness of a solution for some parabolic type equation with hysteresis in three dimensions. *Networks and Heterogeneous Media*, 2014, vol. 9, pp. 683–707.

11. Kumazaki K., Aiki T., Sato N., Murase Y. Multiscale model for moisture transport with adsorption phenomenon in concrete materials. *Appl. Anal.*, 2018, vol. 97, pp. 41–54.

12. Sato N., Aiki T., Murase Y., Shirakawa K. A one dimensional free boundary problem for adsorption phenomena. *Netw. Heterog. Media,* 2014, vol. 9, pp. 655–668.