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Abstract. In this paper we consider a drying and wetting process in porous medium
to create a mathematical model for concrete carbonation. The process is assumed to be
characterized by the growth of the air zone and a diffusion of moisture in the air zone.
Under the assumption we proposed a one-dimensional free boundary problem describing
adsorption phenomena in a porous medium. The free boundary problem it to find a curve
representing the air zone and the relative humidity of the air zone. For the problem we
also established existence, uniqueness and a large time behavior of solutions. Here, by
improving the method for uniform estimates we can show the existence of a periodic
solution of the problem. Also, the extension method is applied in the proof. This idea
is quite important and new since the value of the humidity on the free boundary is
unknown.

Keywords: free boundary problem, periodic solution, fixed point argument.

1. Introduction

Recently, we have proposed and studied the following free boundary
problem (1.1) — (1.5) to investigate concrete carbonation process. In this
model we consider a drying and wetting processes in one hole of a porous
medium and regard the hole as a one-dimensional interval [0, L], where L
is the length of the hole. Also, we suppose that the interval consists of the
water-drop (liquid) zone [0, s(¢t)) and the air zone (s(t), L], and denote by
u the relative humidity in the air zone, where ¢ € [0, T] is the time variable
and x = s is a curve with 0 < s < 1 on [0,7] for T > 0 (see Figure 1).
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The problem is to find a pair of the curve x = s(t) and the function u
on

Qs(T):={(t,z);0 <t <T,s(t) <x <L}
(see Figure 2) satisfying

Time t
wall )

air

s(t 0 wall

l( ) 0, °

|
¢ 0 . Atmosphere
|| ) > x
x=0 L
Figure 1.: Image of one hole Figure 2.: Domain of the problem

Pgtit — Kugy =0 in Q4(T), (1.1)
u(t,L) =0b(t) for0<t<T, (1.2)
5(t)(:= %s(t)) =a(u(t,s(t)) —e(s(t))) for0O<t<T, (1.3)
Kug(t,s(t)) = (pa — pgu(t,s(t)))s(t) for0<t<T, (1.4)
s(0) = sp, u(x,0) = up(x) for s <z < L, (1.5)

where p, and p, are constants of the density of the aqueous-H>O and the
gaseous-Hs O, respectively, k is a diffusion constant of the gaseous-H50O, a
positive constant a and a continuous function ¢ on R indicate the growth
rate of the liquid zone, b is a given boundary function on [0, 7], and sy and
uo are initial data.

This problem was first proposed in 2013 [5]. The main idea of the
modeling is to regard that the degree of saturation is ratio of the length of
the liquid region to the whole length. By this assumption we can describe
the relationship between the degree of saturation and the relative humidity
by the free boundary problem. Before this research we adopted a play
operator as a mathematical description for the relationship, for example,
[2;3;10]. However, the system with the play operator model has a difficulty
on regularities of solutions. Then, we arrived at the free boundary model
to overcome the difficulty.

In [5;12] under suitable conditions for a, ¢, b, pa, pg, so and ug we
have proved that the above initial-boundary value problem P(b, sg, ug)
= {(1.1) — (1.5)} admits a unique solution {s,u} on [0,Ty] for some
0 < Tp <T. Also, we [6] showed the global existence of a solution in time
and convergence of the solution to the stationary state as t — oo by getting
uniform estimates of the solution with respect to ¢. Moreover, this free
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boundary problem is a part of a two-scale model for concrete carbonation
process in three dimensional domain 2 C R?® (see [4]). On this subject
Kumazaki [8;9] obtained continuity and measurability of solutions of P(b(¢),
50(€), uo(€)) with respect to £ € Q, when the function b(§) = b(t,£), so(€)
and uo(§) = wup(z,§) are defined for ¢t € (0,7),x € (so(&),L), £ € .
Furthermore, in our recent work [11] the local existence of a solution of
the two-scale model was proved.

In this paper for 0 < T, < oo we consider a periodic problem PP(b) :=

{(1.1) = (1.4),(1.6)},
s(0) = s(T%),u(0) = u(Ty) on (s(0), L), (1.6)

and establish the existence of a periodic solution by improving a way to
get uniform estimates. There are a lot of results dealing with periodic
solutions of a classical one-dimensional Stefan problem which is one kind of
free boundary problems. For example, in [1] existence and uniqueness of a
periodic solution were proved. Particularly, in the proof of the uniqueness
the weak formulation called enthalpy formulation plays a very important
role (also see [7]).

However, in the present model a weak formulation is not found, yet.
Thus, the uniqueness of the periodic solution of PP(b) is open problem,
now.

We define a solution of our problem and give a statement of our main
theorem in the next section. In section 3 we shall obtain some uniform
estimates for solutions with respect to ¢. Finally, we prove the theorem in
section 4.

2. Main result

We begin with assumption for given data ¢, a, py, pe, L and b.
(A1) p € CHR) N WH(R), ¢ = 0 on (—00,0], » <1 on R and ¢’ > 0 on
(0, L].

(A2) a, K, p, and p, are positive constants satisfying

1
Pa > 2pg, Pa = Py <(1 + E)|SD/|L°°(R) + 2> and 9aLp] < Kpa.

(A3) b € WhH2(0,T.), b(0) = b(T.) and 0 < b < b, on [0, T}], where b, is a
positive constant with b, < ¢(L). We put dy = p(L) — bx > 0.

Here, we define solutions of P(b, so, ug) and PP(b) in the following way:

Definition 1. Let s and u be functions on [0,T] and Qs(T), respectively,
for T > 0. We call that a pair {s,u} is a solution of P(b,so,ug) on [0,T]
if the conditions (S1), (S2) and (1.1) — (1.5) hold:
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(S1) s € Wh>(0,T), 0< s < L on [0,T].

(S’?) u € LOO(QS(T))f Ut, Ugz € L2(Q8(T))7 ‘ux(')‘L2(s(-),L) € Loo(ovT)'
Also, it is called that the pair {s,u} is a solution of PP(b) on [0,T.], if (51)
and (S2) hold with T =T, and (1.1) — (1.4), (1.6) are valid.

Remark 1. Let {s,u} be a solution of P(b, sg, ug) on [0,T], T'> 0. It is
easy to see that u € C(Q(T)). Immediately, by (1.3) we have s € C*([0,T)).

The main result of this paper is as follows:

Theorem 1. If (A1) — (A8) hold, then the periodic problem PP(b) has a
solution on [0, Ty].

Before we give a sketch of a proof of Theorem 1, we recall existence and
uniqueness results for P(b, sg,ug).

Theorem 2. [6, Proposition 2.3, Theorem 2.4] If (A1) — (A3) and (A4)
hold,

(A4) 0<sg< Lyup € H (s0, L), up(L) = b(0) and 0 < ug < 1 on [sg, L],

then P(b, so, ug) has one and only one solution {s,u} on [0,T] satisfying
0<u<1onQsTs).

Next, in order to consider our problem on the cylindrical domain we
introduce some notations. Let {s,u} be a solution of P(b, sg, ug) on [0, T%]
and put

u(t,y) = u(t, (1 —y)s(t) + Ly) for (t,y) € Q(Tx) := (0, %) x (0,1). (2.1)

Then @ satisfies:

Py = G i = %Qy in Q(T), (2.2)
a(t,1) =0b(t) for0<t<T, (2.3)
():(mum o(s(t) for0<t<T, (2.4)
L5 ) Uy(t,0) = (pa — pgti(t,0))s(t) for 0 <t < T, (2.5)
$(0) = s0,a(0,y) = to(y) :=uo((L — y)so + Ly)  for 0 <y < 1(2.6)

Here, we provide the sketch of the proof in which we apply the Schauder
fixed point theorem.

1) For any M > 0 and 0 > 0 we define a set

_ z€ HY(0,L); |2 | r2(0,) < M,
K(M,6) =[0,1—4] x { 2(L) =b(0),0<z<1on (0,L) "
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For (so,u0) € K(M,d) we write ug = uo|[sy,z), again, where ug|, 1] is
a restriction of ug to [sg, L]. Then, Theorem 2 implies the existence of a
solution {s,u} of P(b, so, up) on [0, T}]. Hence, we can define a solution
operator A : K (M,d) — [0,1) x L?(0, L) by A(so,ug) = (s(T%), u(T%)),

where u(7y) is an extension of u(7}) defined below:

u(Ty, x) for s(T,) <z < L,

u(T, z) = { w(Ty, s(Ty)) for 0 <z < s(Ty). (2.7)

2) By using uniform estimates obtained in Lemmas 2 and 4 we can take

M >0 and ¢ > 0 such that A : K(M,6) — K(M,9).

3) On account of the continuity of A given in Lemma 5 we can apply the
fixed point theorem to A so that we can prove Theorem 1.

3. Uniform estimates with respect to ¢

In this section we provide some uniform estimates for the solution of
P(b, S0, UQ).

Lemma 1. Assume (A1) — (A4). Let {s,u} be a solution of P(b, so, ug)
on [0,Ty]. Then it holds that

flualt, ()] < 2a(p0 + pp), |30 <20 forte DT (31)
Proof. Since 0 < u <1 on Qs(T%), by (1.3) and (1.4) we see that

[3()] = alu(t, s(t)) = ¢(s(t))] < 2a,

and
Klug(t, s(t)] = |pa — pgult, s(t))[|5(t)]
< 2a(pq + pg) fort e [0,T].
Thus we have proved this lemma. O

Now, we give essential uniform estimates in the proof of Theorem 1.
Although the proof is quite similar to that of [6, Lemma 3.2], it is improved
and the calculations are delicate so that we show it in detail, here. To state
the lemma, we put

L
K
=—"_ E{) = L(t)?dz for t T.].
Ko 2ng2a () /s(t)|u<)| € 101 G[Oa ]
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Lemma 2. Under the same assumptions as in Lemma 1 let {s,u} be a
solution of P(b, sg, ug) on [0,T,]. Then there exists a positive constant M
depending only on pg, pp, ¢, a, b and L (independent of so and ug) such
that

E(t) < e ™'E(0) + My for 0 <t <T.. (3.2)

Proof.  First, to handle the boundary condition, easily, we define a
function ¥ on R by

Lpar? — %pg for r > 1,
W(r) = 2par? = 5pgr® for0<r <1, (3:3)
for r < 0.

Clearly, v is convex and continuous on R. Moreover, we use the nota-
tion @ and 4y given by (2.1) and (2.6), respectively, and put v, (t,y) =

u(t —a(t—h
u( ay) Z( ’y) for h > 0 and (t’y) S Q(T*), where

to(y) fort<0,0<y<1,

aft,y) = { iio(0) for t <0,y <0, (3.4)

and s(t) = s(0) + t$(0) and b(t) = b(0) for t < 0. Here, we note that
Remark 1 implies s € C'!([0,T}]) so that the extension of s is available.

We multiply (2.2) by (L — s)v, and integrate it over (0, 1) with respect
to y. Then, we have

1
po(L — (1)) /O i (t)on(t)dy

K 1 K
— _m/o Ty () vpy (t)dy + may(t, vy (t,1) (3.5)
K 1
A s(t) ﬁy(t,O)vh(t,O) + pgé(t)/o (1 - y)ﬁy(t)vh(t)dy

4
(:= ZIZ(t)) for a.e. t € [0,T].
i=1
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It is easy to see that

K 1
1O < ~grrrmsayy [ (o =l = wR)dy
B N e G O Y RN E I
< %(S(t)m)\d 0 /S(t_h)w h>rd>
L L
- ug ()2 dz — ug(t — h)|Pdz
< 2h<s@' (t) L(t_h)| (t—n) )
k s(t) —s(t—h) [T 9
o L—s() /(t_h)|ux(t—h)| dx  for a.e. t € [0,T,],
and
kb)) —b(t—h)
I(t) = muy(t D=
= Kug(t, L)w for a.e. t € [0,T%].

On account of (2.4) and (2.5) we infer that

I3(t) = —alpa — pgu(t,0))(u(t,0) — (s(t)))va(t, 0)
— —alpa — pyii(t,0))i(t, 0)u(1,0) + a(pa — pyii(t,0)p(5(1))un (1,0)
= I31(t) + I32(t) for ae. t € [0,Ty].

Here, since 0 < uw < 1 on Q(7%), it holds that (p, — pgt(t,0))u(t,0) =
' (u(t,0)) for a.e. t € [0,Ty], and from the convexity of ¢ it follows that

Isa(t) < =3 ((@(t,0)) = ¥(alt — h,0))) for t € [0,T.].
Also, by using (2.4) again, we have

Is2(t) = (pa = pytlt, 0))p(s (1) (W)

rapn = py(t.0)ptote)) (D=L for e )

and

I35(t)
= (Pa = pyu(t, 0))(s(t)) (f

+a(pa — pgt(t, 0))e(s(t))

ratpn = py(t.0)ptste)) (FHOFEERIONZAON) for e o,
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Here, we integrate (3.5) over [0,¢1] for 0 < ¢; < T,. Accordingly, the
above arguments lead to:

t1 1
” /O (L s(1)) /0 i (£ yon (1) dydi (= Top) <

K t1 L L
< —— / g (t)2dx — / lug (t — h)|?dx | dt+
2h Jy s(t) s(t—h)

[Tt msE—h) [T e
7 M T MM
+/O1I£ux(t,L)b(t)L}§th)dt—/ol%(lb(ﬁ(t,O))—w(ﬂ(t—h’O)))dZH_
+pa /0 1¢(S(t))(é(t)—éh(t ") gt vaps /0180(8 (t))ﬂp(s(t))—fl(s(t—h))dt_
—%/0 lé(t)w(S(t))wclt—pg/olgp(s(t))det_
—Pg/o 1 5(15)90(5(75))%0(8(0) _ Z(s(t — h))dt_
" p(s(t) — p(s(t — h))
— o [ elste)? : i+
h i VO — (e
+a/0 (pa — pyi(t,0))(s(t)) (30( (0) +( hzb (0)) — e (0))> N

t1 1
Y5y /0 5(1) /O (1= y)ity (#)on (£)dydt
12
(:— Z fm> for any ¢; € [0,T%]. (3.6)
i=1

First, by change of the variable we see that

R t1 1
fim o = py [ (L= s(0) [ fau(t) Pyt =
h—0 0

t1
pg/ / g (t) | dadt+

L — X
+2p, /0 5(t) L(t) L_ SOl dede+

+ pg /Otl !é(t)\z/OL <%>2\ug¢(t)\2dwdt.

UzBectusi IpkyTCKOro rocyZjapCTBEHHOI'O yHUBEPCHUTETA.
2018. T. 25. Cepusa «Maremaruras. C. 3-18




PERIODIC SOLUTIONS OF FREE BOUNDARY PROBLEM 11

Next, we have

. K t1 L 0 L
J— / / \ux(t)]2dxdt—/ / (1) [2derdt |
2h \ Jo,—n Js) —nJs()

As mentioned in the proof of Lemma 3.5 in [12], the function

L
- / (1) P
(0

is absolutely continuous on [0, 7,]. Then it follows that

K t1 L 5 K L 5
lim ——/ / Uy (t)|“dadt = ——/ ug (t1)]“dx.
T A NGl 5 . e

The extension (3.4) leads to

~ Juo(x) fort<0,s0<x<L,
u(t,z) = { up(sp) for t <0,z < sp.

Then, it is easy to see that

0 /L L 1 0 s0)
i/ / ()Pt = f/ yquPdH—/ / luge [P dt
2h J_y, s(t) 2 /s hJ_p s0+t5(0)

K L
— —/ luge|*dz  as h — 0.
2 Js

Thus, we get

N K L 2 K L 2
lim 1y, = ——= t1)|°d - dz.
fimdu =5 [ uttPe s 5 [ s

S0

Similarly,

. t1 $(t L
lim fop = g / LSL / g ()2 dzdt.
0 s

h—0 — S(t) )
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By (1.1) and (1.4) it follows that

~ tl .
lim I3, = / Kug (t, L)b(t)dt =
0

h—0
_ ,@/tl (/L s () +um(t,s(t))> b(t)dt =
0 s(t)

t1 L
N /0 </(t) pgut(t)dx + (po — pmp(s(t)))é(t)) b(t)dt <

t1 pL ) t1 |
<D / g (t)| 2ddt + pg—/ 1b(t)[2dt+
2 Jo Js 2 Jo

Ll [P ) + 150 R)ar

Since @ is continuous on Q(7%), we can get

N t1
%%m——gﬂﬁmywwwﬁﬂwww

= —a(¥(ulty, s(t1))) — ¥(i0(0))).
Here, by using § € C([0,7%]) and ¢(s) € C*([0,T.]) we observe that

1R p(s(t) — (st +h))

i Lsn = pa it | . $(t)di+
1 t1 1 —h
+ po lim <— / o(s(1))5(t)dt — / gp(s(t—i—h))é(o)dt) _
h—0 h tl—h h 0

= —pa/o 1 ' (s(O)I3(8)1dt + palip(s(t1))$(t1) — ¢(5(0))5(0)),

Jim g = 0% (p(s(11))” = ((0))?),

~ a1
lim sup I7;, < limsup Py o(s(t))(5(t — h)? — 5(t)?)dt <
h—0 h—o  2ah Jo

N st + )~ o(slt)) o

< limsup =2 dt+
o’ 2a Jo h
p 1 t1 1 0
+ =2 lim sup <—/ w(s(t))s(t)%dt — —/ o(s(t + h))5(0)2dt> <
20 pso \PJy-n hJ n

< 5—2 /O (st + 5—2 (e(s(t))Is(t)* = (s(0))15(0)]%) ,

UzBecTusi IpKyTCKOro rocyZjapCTBEHHOI'O yHUBEPCHUTETA.
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" o(s(t)? — e(s(t + h))?

pm Tsn = —pg lim | n S(tydt-
im ([ ety [ ot mpso
- im | — B — —
pgh%O h tl_h@ 5 s h _hSO

= 2,09/0 () s(8)) 3 (1) Pt — pg(p(s(t1))?3(t1) — ¢(5(0))?5(0)),

Jim Fon = =22 [ 150) Pets(0) ¢ (s(0)ae < 0

lim i =~ ((5(1)° = £(5(0)°)

and

h .
- t — h||5(0

\Iuh!Sa(pa+pg)\go’yLoo(R)/ #dt—m as h — 0.
0

Moreover, we see that

t L L—z
lim [19, = pg/ s(t)/ Uy (t)ug (t)dxdt+
h—0 0 s

@ L —s(t)
t L L—x \?
+ / $(t 2/ <7> wy (8)|?dzdt.
o [ 150F [ () e
From the estimates for foh, e ,f 195, 1t follows

p t1 L K L
—9/ / g (t)|?dzdt + —/ lug (t1)|2dx + F(t1) <
2 Jo Jsw 2 Js(r)

t L .
<FO) = [ ) [ . st (¢ dadi

. / L s Pz + /0 ! <72( Lﬁi(i)(t))> / ; g (8) 2+

t1
+C’1/ (|b()|> + 1)dt  for 0 <t; < Ty, (3.7)
0

where (' is a positive constant depending only on p,, pg, @, ¢, k, and L
and

F(t) = ab(u(t, s(t))) — pap(s()3(t) — L20(s(1))% = PLip(s(t))]5(t) 2

2 2a
ap

280 (5(0)° + pypls()?3(t)  for0 <t < T,
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Furthermore, for the second term in the right hand side of (3.7) we can get

tr L -z _
- pg/o 5(t) /(t) mut(t)ux(t)dxdt =

t1 L I —
= —I{/ 5(t) / ° um(t)ux(t)dxdt:

_ . 5(t) x1au 2 gt —
- /oiw—s())/s@@ ) o (1) Pl

= —K tli ’ U 2dx
- /0 2L s(0)) /s@' o ()] dardit

t1
+ g/ () |ug(t, s(t)2dt  for 0 <t <T,.
0

By substituting this equation and (1.1) into (3.7) we have

t1 L
2pg / s (1) dwdt+2/8 lup (01) Pz + F(t1) <

(t1)

t1 |
< g/ [z 2dz + F(0) + 02/ ([b()]* + 1)t for t1 € [0,T], (3.8)
S0 0

where Cs is a positive constant depending only on pg, pg, a, ¢, k and L.
Here, it is easy to see that

L L
/ ug (t)2dx < 2L2/ Uz (t)|2dx + 2L|ug (¢, s(t))[*  for t € [0,T].
s s(t)

(t)
(3.9)
On account of (3.8) and (3.9) we see that

:‘<L2 t1 L ) K
A il <
e /0 / O+ DB + P <
t1 .
< gE(0)+F(0)+03/ (b2 + 1)dt  for 1 € [0,T.],
0

where (3 is a positive constant.
By regarding to € [0, 7] as the initial time the above argument implies
that

t1
ko | E()dt+ gE(tl) () <

to

t1 |
E(to) + F(to) + 03/ (|b(®)]> + 1)dt ~ for 0 <ty <ty < Ts.

to

wlx

UzBectusi IpkyTCKOro rocyZjapCTBEHHOI'O yHUBEPCHUTETA.
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Then, the absolutely continuity of E on [0, 7}] guarantees that

koE(t) + S%E( t) + cCZZtF(tl) < Cg(’i)(t)P +1) for a.e. t € [0,7.]3.10)

We multiply (3.10) by e"°! and have

%(e””ot(E(t)+F(t))) < O3t (|b(t)[2+1) + ko™ F(t)  for ae. t € [0,T4]

so that there exists a positive constant M; such that
E(t) <e ™'E(0)+ M, fortc[0,T,].

Thus we have obtained (3.2). O

Next, we show the uniform estimate for the free boundary s:

Lemma 3. (¢f. [6, Lemma 3.3]) Let {s,u} be a solution of P(b, so, up)
on [0,Ty] and M, be a positive constant satisfying st(t) |ug(t)|2dx < M, for
0 <t<Ty, and put

2
_ _ d()
B (2(\/M+C¢\/f)> |
If s(t) > s«(M,) for some t € [0,T,], then s(t) < 0.

Proof.  Assume that s(t) > s.(M,) for some t € [0,7,]. Then we
observe that

= a(u(t, s(t)) = b(t) + b(t) = b + b — (L) + (L) — ¢(s(1))) <

L
<al I s(t)(/(t) o (1) [2de)/? = do + C,p(L — s(t))) <
SCL(\/ — s5.(M. \/—+C’\/_ ><_a7d0‘

This is a conclusion of this lemma. O

Lemma 4. (c¢f. [6, Proposition 3.4]) Let {s,u} be a solution of P(b, s,
up) on [0,Ty]. Then it holds that

s(t) < max{sop, s« (M)} for any t € [0, T]. (3.11)

Proof. First, we assume that sg > s.(M,). Then, since s is continuous
on [0,T}], one of the following cases must occur:

(case 1) s(t) > s«(M,) for t € [0,T%].
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(case 2) there exists ¢y € (0, 7] such that
s > s.(M,) on [0,Tp] and s < s.(M,) on (tg,to + ') for some & > 0.

In case 1, by Lemma 3 we have $ < 0 on [0,7}] so that s(t) < s(0) for
t € [0,Ty]. Thus, we get (3.11). In case 2, we suppose that there exists
t1 > to such that s(t;) > s«(M,). Then we can take to € (to,t1) satisfying
s(ty) > s.(M,) and 5(t3) > 0, since s € C1([0,T}]). This contradicts to
Lemma 3. Hence, (3.11) holds.

If so < s4(M,), then we can obtain (3.11) in the similar way. This lemma
is proved. O

4. Existence of periodic solution

The aim of this section is to prove Theorem 1. First, we recall the
continuous dependence of data for a solution of P(b, sg, ug).

Lemma 5. (¢f. [6, Lemma 4.3]) Assume (A1) - (A3). For any M > 0
and 6 > 0 let (spi,uoi) € K(M,9), i = 1,2. Here, Theorem 2 implies the
existence of a solution {s;,u;} of P(b, so;, upi) on [0,T.] for each i. Here,
by using (2.1) we define @; and to; from u; and wg;, respectively, for each
i. Then there exists a positive constant Mo such that

t
|s1(8) = s2(t)[* + | () — a2 () [ +/0 |Gy — Gy |72 1y dT

< M, <‘801 - 802’2 + ’ﬁ01 — ﬁoz’%g(071)> for 0 <t <T,.

Proof of Theorem 1. Let M > 0 such that
My < (1 — e FoT)M,

where M, is the positive constant obtained in Lemma 2. Moreover, we can
take § > 0 such that s,(M) < 1 — 4, where s,(M) is defined in Lemma
3. Then, Theorem 2 implies that for (sg,ug) € K(M,J) P(b, sg, ug) has a
unique solution {s,u} on [0,7]. Here, we extend u(T}) to the function on
[0, L] by (2.7). Thanks to Lemma 2 we have

L L
/ (T2 2 < e—*oT- / luge 2z + M.
0 0

Easily, we see that fOL lug(Ty)|[?de < M. From Lemma 4 it follows that
s(Ty) < 0. These facts indicate A : K(M,0) — K(M,9).

Clearly, Lemma 5 leads to the continuity of A in Rx L2(0, L) and K (M, §)
is convex and compact in the topology of R x L?(0, L). Hence, the theorem
is a direct consequence of the Schauder fixed point theorem. O

WzBectusi IpKyTCKOro rocyapCTBEHHOI'O yHUBEPCHUTETA.
2018. T. 25. Cepusa «Maremaruras. C. 3-18



10.

11.

12.

PERIODIC SOLUTIONS OF FREE BOUNDARY PROBLEM 17

References

Aiki T. Periodic stability of solutions to two-phase Stefan problems with nonlinear
boundary condition. Nonlinear Anal. TMA., 1994, vol. 22, pp. 1445-1474.

Aiki T., Kumazaki K. Mathematical model for hysteresis phenomenon in moisture
transport of concrete carbonation process. Physica B, 2012, vol. 407, pp. 1424—
1426.

Aiki T., Kumazaki K. Well-posedness of a mathematical model for moisture trans-
port appearing in concrete carbonation process. Adv. Math. Sci. Appl., 2011, vol.
21, pp. 361-381.

Aiki T., Kumazaki K., Murase Y., Sato N. A two-scale model for concrete car-
bonation process in a three dimensional domain. Surikaisekikenkyusho Kokyuroku,
2016, no. 1997, pp. 133-139.

Aiki T., Murase Y., Sato N., Shirakawa K. A mathematical model for a hysteresis
appearing in adsorption phenomena. Surikaisekikenkyusho Kokyuroku, 2013, no.
1856, pp. 1-11.

Aiki T., Murase Y. On a large time behavior of a solution to a one-dimensional
free boundary problem for adsorption phenomena. J. Math. Anal. Appl., 2017, vol.
445, pp. 837-854.

Damlamian A., Kenmochi N. Periodicity and almost periodicity of solutions to
a multi-phase Stefan Problem in several space variables, Nonlinear Anal. TMA.,
1988, vol. 12, pp. 921-934.

Kumazaki K. Continuous dependence of a solution of a free boundary problem
describing adsorption phenomenon for a given data. Adv. Math. Sci. Appl., 2016,
vol. 25, pp. 289-305.

Kumazaki K. Measurabllity of a solution of a free boundary problem describing
adsorption phenomenon. Adv. Math. Sci. Appl., 2017, vol. 26, pp. 19-27.
Kumazaki K., Aiki T. Uniqueness of a solution for some parabolic type equation
with hysteresis in three dimensions. Networks and Heterogeneous Media, 2014, vol.
9, pp. 683-707.

Kumazaki K., Aiki T., Sato N., Murase Y. Multiscale model for moisture transport
with adsorption phenomenon in concrete materials. Appl. Anal., 2018, vol. 97, pp.
41-54.

Sato N., Aiki T., Murase Y., Shirakawa K. A one dimensional free boundary
problem for adsorption phenomena. Netw. Heterog. Media, 2014, vol. 9, pp.
655—668.

Toyohiko Aiki, Doctor of Science (Mathematics), Professor, Depart-

ment of Mathematics, Faculty of Science, Japan Women’s University, 2-8-1
Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
(e-mail: aikit@fc.jwu.ac.jp)

Naoki Sato, Doctor of Science (Mathematics), Associate Professor,

Division of General Education, National Institute of Technology, Nagaoka
College, 888, Nishikatakai, Nagaoka, Niigata, 940-8532, Japan
(e-mail: naoki@nagaoka-ct.ac.jp)

Received 04.06.18




18 T. AIKI, N. SATO

CyuiecTBoBaHNE MEPUOANYECKUX PEIIEHUl B OTHOMEPHOIA
3aJiave co cBOOOHOI rpaHUIleil, ONMUCHIBAIOIIE aCcOpOIMOH-
HbIe SIBJICHUSI

T. Aukn

Hnonckuti orcencruti ynusepcumem, Toxuo, Anorus

H. Caro

Hayuonanrvroli mexnonroeuveckuts uncmumym, Huueama, Anonwus

Awnnoramusi.  PaccmarpuBaercst mporecc CyImkd U CMaduBaHUsl B IMOPUCTOR Cpe-
e Jjisi CO3JaHUsl MaTeMaTHIeCKON Mojean KapOoHuzamuu ieMenTa. [Ipeamosiaraercs,
9TO JAHHBIA MPOIECC XapaKTEePHU3yeTCsl POCTOM BO3JYIIHON 30HBI U guddy3ueil Biaaru
B BO3/ymIHON 30He. Ilpm JaHHOM IIPEIIIONIOXKEHUN IIPEJIaraeTcs OJIHOMEpHAasl 3ajada
CO CBODOJHOI TI'paHUIEH, ONMCHIBAIONMIAs AJCOPOIMOHHDBIE SIBJICHUS B TOPUCTON CpeJie.
3ataga co CBOOOIHOM IpaHUIEN 3aKII0YAETCsSI B HAXOXKIEHUHN KPUBOIA, TTPEICTABISIIONIEN
BOB/IYIIHYIO 30HY ¥ OTHOCUTEIbHYIO BJIAKHOCTH BO3/IYIITHOM 30HBI. TaKIKe yCTAHABIMBA-
FOTCSI CYIIIECTBOBaHNE, €JIMHCTBEHHOCTD U ITOBEJIEHNE pellleHnil Ha beckonedHocTH. Tak»xke,
yJIydmiasd MeTOJ, PABHOMEPHBIX OIEHOK, IIOKAa3bIBACTCA CYIIECCTBOBAHUE IIEPUOAAIECKOIO
pettenus 3ajgaqu. Kpome 3Toro, B JI0Ka3aTebCTBE IMPUMEHSIETCS METOJ PACIIAPEHUsI.
OTa umest sIBIASETCS BeCbMa BAXKHOW M HOBOM, IMOCKOJIBKY 3HAYEHHME YPOBHS BJIAXKHOCTH
Ha CBOOO/IHOU I'DAHUIE HEU3BECTHO.

KuarodeBbie cjioBa: 3aj1ada co CBOOOIHON I'paHUIEH, IEPUOINIECKUE PEIICHUSI.
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