«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2011. Vol. 4

Local R-controllability to zero of nonlinear algebraic-differential systems

Author(s)
P. S. Petrenko
Abstract

We consider a control system of nonlinear ordinary differential equations unsolved with respect to the derivative of the desired vector function and identically degenerate in the domain of definition. An arbitrarily high index of unsolvability is allowed. The conditions of local R-controllability to zero (zero-controllability within the reachable set) of such system are obtained in terms of the first order linear approximation. In the linear case, it is shown that R-controllability implies local R-controllability to zero.

Keywords
differential-algebraic equations, nonlinear system, R-controllability in terms of the first order linear approximation
UDC
517.977.1, 517.922
References

1. Щеглова А. А. Преобразование линейной алгебро-дифференциальной системы к эквивалентной форме / А. А. Щеглова // Тр. IX Четаев. Междунар. конф. «Аналитическая механика, устойчивость и управление движением». – Иркутск : Изд-во ИДСТУ СО РАН, 2007. – Т. 5. – С. 298–307.

2. Щеглова А. А. Управляемость нелинейных алгебро-дифференциальных систем / А. А. Щеглова // Автоматика и телемеханика. – 2008. – № 10. – С. 57–80.

3. Шилов Г. Е. Математический анализ (функции нескольких вещественных переменных) / Г. Е. Шилов. – Ч. 1–2. – М. : Наука, 1972.

4. Dai L. Singular control system / L. Dai// Lecture notes in control and information sciences. – Springer-Verlag, Berlin, Heidelberg N. Y, 1989. – Vol. 118.

5. Mehrmann V. Descriptor systems: a general mathematical framework for modelling, simulation and control / V. Mehrmann, T. Stykel // Automatisierungstechnik. – 2006. – N 8. – P. 405–415.


Full text (russian)