«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2012. Vol. 4

On an approach to the robustness in the case of the p-median problem

Author(s)
I. L. Vasilyev, A. V. Ushakov
Abstract

In this paper we study an approach to the robustness of discrete facility location problems by the example of the p-median problem. For that purpose a bicriteria facility location problem of p points of service in order to minimize the total cost of satisfying the demands of all clients and to maximize the robustness of obtained solutions is considered. An algorithm of finding an approximation of the weak Pareto solution set based on the ε-constraint method has been proposed.

Keywords
discrete facility location, robustness, bi-objective combinatorial optimization, p-median problem, ε-constraint method
UDC
519.854.2
References

1. B´erub´e J. F. An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits / J. F. B´erub´e, M. Gendreau, J. Y. Potvin // EJOR. – 2009. – Vol. 194, N 1. – P. 39–50.

2. Blanquero R. Locating a competitive facility in the plane with a robustness criterion / R. Blanquero, E. Carrizosa, E. M. T. Hendrix // EJOR. – 2011. – Vol. 215, N 1. – P. 21–24.

3. Carrizosa E. Robust facility location / E. Carrizosa, S. Nickel // Math. Methods Oper. Res. – 2003. – Vol. 58, N 2. – P. 331–349.

4. Ehrgott M. Bicriteria robustness versus cost optimisation in tour of duty planning at Air New Zealand / M. Ehrgott, D. M. Ryan // Proceedings of the 35th Annual Conference of the Operational Research Society of New Zealand. – 2000. – P. 31–39.

5. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys / eds.M. Ehrgott, X. Gandibleux. – Dordrecht : Kluwer Academic Publishers, 2003. – 520 p. – (International Series in Operations Research & Management;Science).

6.;Hakimi S. L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems / S. L. Hakimi // Operations Research. – 1965. – Vol. 13, № 3. – P. 462–475.

7. Mavrotas G. Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems / G. Mavrotas // Applied Mathematics and Computation. – 2009. – Vol. 213, N 2. – P. 455–465.

8. Melamed I. I. A computational investigation of linear parametrization of criteria in multicriteria discrete programming / I. I. Melamed, I. K. Sigal // Computational Mathematics and Mathematical Physics. – 1996. – Vol. 36, N 10. – P. 1341–1343.

9. Melamed I. I. The linear convolution of criteria in the bicriteria traveling salesman problem / I. I. Melamed, I. K. Sigal // Computational Mathematics and Mathematical Physics. – 1997. – Vol. 37, N 8. – P. 902–905.

10. Melamed I. I. Numerical analysis of tricriteria tree and assignment problems / I. I. Melamed, I. K. Sigal // Computational Mathematics and Mathematical Physics. – 1998. – Vol. 38, N 10. – P. 1704–1707.

11. Melamed I. I. Combinatorial optimization problems with two and three criteria / I. I. Melamed, I. K. Sigal // Doklady Mathematics. – 1999. – Vol. 59, N 3. – P. 490–493.

12. The p-median problem: A survey of metaheuristic approaches / N. Mladenovi´c, J. Brimberg, P. Hansen, J .A. Moreno-P´erez // EJOR. – 2007. – Vol. 179, N 3. – P. 927–939.

13. Reese J. Solution Methods for the p-Median Problem: An Annotated Bibliography / J. Reese // Networks. – 2006. – Vol. 28, N 3. – P. 125–142.


Full text (russian)