«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2014. Vol. 9

On the Hierarchy of Generating Functions for Solutions of Multidimensional Difference Equations

Author(s)
T. I. Nekrasova
Abstract

In this paper we study generating functions of solutions for a difference equation with the support in a rational cone of the lattice. For Laurent series with the support in such cone we define the notion of D-finiteness and find the sufficient condition, when rationality (algebraicity, D-finiteness) of the generating function of the solution to the Cauchy problem follows from rationality (algebraicity, D-finiteness) of the generating function of its initial data.

Keywords
multidimensional difference equations, Cauchy problem, generating function, D-finite Laurent series
UDC
517.55+517.96
References

1. Arnold V.I., Varchenko A.N. Osobennosti differentsiruemikh otobrazheniy [Singularities of differentiable maps]. Moscow, MTSNMO, 2009. 672 p.

2. Leinartas E.K., Lyapin A.P. On rationality multidimentional recursive power series [Oh ratzionalnosti mnogomernih vozvratnih stepennih ryadov]. Zhurnal Sibirskogo Federalnogo universiteta [Journal of Siberian Federal University], 2009, vol. 2 (4), pp. 449–455.

3. Leng С. Algebra [Algebra]. Moscow, Nauka, 1965. 431 p.

4. Nekrasova T.I. Cauchy Problem for Multidimensional Difference Equations in Lattice Cones [Zadacha Koshi dlya mnogomernogo raznostnogo uravneniya v konusakh tselochislennoy reshetki]. Zhurnal Sibirskogo Federalnogo universiteta[Journal of Siberian Federal University], 2012, vol. 5(4), pp. 576-580.

5. Nekrasova T.I. Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations Izvestiya Irkutskogo Gosudarstvennogo Universiteta [The Bulletin of Irkutsk State University], 2013, vol. 6, no. 3, pp. 88-96.

6. Stanley R. Perechislitelnaya kombinatorika [Enumerative Combinatorics]. Vol. 2. Мoscow, Mir, 2009. 767 p.

7. Bousquet-M´elou M., Petkovˇsek M. Linear recurrences with constant coefficients: the multivariate case. Discrete Mathematics, 2000, vol. 225, pp. 51-75.

8. Brion M., Vergne M. Lattice points in simple polytopes. Journal of the American Mathematical Society, 1997, vol. 10, no 2, pp. 371-392.

9. Forsberg M., Passare M., Tsikh A. Laurent Determinants and Arrangements of Hyperplane Amoebas. Advances in Math, 2000, vol. 151, pp. 45-70.

10. Lipshitz L. D-Finite power series. Journal of Algebra, 1989, vol. 122, pp. 353-373.

11. Stanley R. Differentiably finite power series. European Journal Combinatorics, 1980, vol. 1, pp. 175-188.


Full text (russian)