«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2015. Vol. 12

Solutions for Initial Boundary Value Problems for Some Degenerate Equations Systems of Fractional Order with Respect to the Time

Author(s)
D. M. Gordievskikh, V. E. Fedorov
Abstract

Solvability theorem for the Cauchy problem to a degenerate linear evolution equation of fractional order in a Banach space is used for deriving of necessary and sufficient conditions of solvability for some arising in hydrodynamics equations systems of fractional order with respect to the time. Solutions forms for considered problems are obtained by means of functional calculus in the Banach algebra of linear bounded operators.

Keywords
fractional differential equation, Sobolev system of equations, Oskolkov system of equations, initial boundary value problem
UDC
517.95
References

1. Davydov P. N., Fedorov V. E. Sil’no vyrozhdennaya sistema uravneniy Oskolkova (in Russian) [Strongly degenerate Oskolkov system of equations] Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser. Matematika. Fizika[Scientific Statements of Belgorod State University, Ser. Mathematics, Physics], 2014, no. 5 (176), issue 34, pp. 5-11.

2. Ivanova N. D., Fedorov V. E., Komarova K. M. Nelineynaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya (in Russian) [Nonlinear inverse problem for Oskolkov system linearized in aneighborhood of a stationary solution]. Vestnik Chelyabinskogo gosudarstvennogo universiteta. Matematika. Mekhanika. Informatika [Herald of Chelyabinsk State University, Mathematics, Mechanics, Informatics], 2012, no. 26 (280), issue 13,pp. 50-71.

3. Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Mathematics and Its Applications 2 (Revised Second ed.), New York–London–Paris–Montreux–Tokyo–Melbourne, Gordon and Breach, 1969.

4. Oskolkov A. P. Nachal’no-kraevye zadachi dlya uravneniy dvizheniya zhidkostey Kelvina–Voighta i zhidkostey Oldroyda (in Russian) [Initial Boundary Value Problems for Motion Equations of Kelvin–Voight and Oldroyd Fluids]. TrudyMat. Instituta AN SSSR [Proceedings of Steklov Mathematics Institute of USSR Academy of Sciences], 1988, vol. 179, pp. 126-164.

5. Sobolev S. L. Ob odnoy novoy zadache matematicheskoy fiziki (in Russian) [On a new problem of mathematical physics]. Izvestiya Akademii nauk SSSR. Ser. matematicheskaya [News of USSR Academy of Sciences, Ser. Mathematical], 1954, vol. 18, no. 1, pp. 3-50.

6. Urazaeva A. V., Fedorov V. E. Prediction-control problem for some systems of equations of fluid dynamics. Differential Equations, 2008, vol. 44, no. 8, pp. 1147-1156.

7. Fedorov V.E., Gordievskikh D.M. Resolving operators of degenerate evolution equations with fractional derivative with respect to time. Russian Mathematics (Iz. VUZ), 2015, vol. 59, no. 1, pp. 60-70.

8. Fedorov V. E., Debbouche A. A class of degenerate fractional evolution systems in Banach spaces. Differential Equations, 2013, vol .49, no .12, pp. 1569-1576.

9. Fedorov V.E., Ivanova N.D. Nelineynaya evolyutsionnaya obratnaya zadacha dlya nekotorykh uravneniy sobolevskogo tipa (in Russian) [Nonlinear evolution inverse problem for some Sobolev type equations]. Sibirskie elektronnye matematicheskie izvestiya [Siberian electronical mathematical news], 2011, vol. 8, Trudy vtoroy mezhdunarodnoy shkoly-konferentsii [Proceedings of Second International School-Conference], part I «Teoriya i chislennye metody resheniya obratnykh zadach» [«Theory and numerical methods of inverse problem solving»], pp. 363-378(http://semr.math.nsc.ru/v8/c182-410.pdf).

10. Balachandran K., Kiruthika S. Existence of solutions of abstract fractional integrodifferential equations of Sobolev type. Computers and Mathematics with Applications, 2012, vol. 64, pp. 3406-3413.

11. Li F., Liang J., Xu H.-K. Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. Journal of Mathematical Analysis and Applications, 2012, vol. 391, pp. 510-525.

12. Sviridyuk G. A., Fedorov V. E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht–Boston, VSP, 2003, 216+vii p.


Full text (russian)