«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2017. Vol. 21

Semantic Probabilistic Inference of Predictions

Author(s)
E. E. Vityaev
Abstract

Prediction is one of the most important concepts in science. Predictions obtained from probabilistic knowledge, are described by an inductive-statistical inference (I-S inference). However, such an inference encounters a problem of synthesis the logic and probability that consists in the rapid decreasing of the probability estimates of predictions in the process of logical inference. The procedures for calculating estimates in the Probabilistic Logic Programming do not solve the problem. From our point of view, prediction can not be well combined with a logical inference. Logical inference should be replaced by calculations. The paper proposes a semantic approach to the calculation of prediction, when the inference is considered not as verification of the truth of some statement on the model, but as a search for facts in the model, predicting the statement with a maximum probability. To do this, the work defines a semantic probabilistic inference forcalculating the predictions. In the process of semantic probabilistic inference, estimates of predictions strictly increase. We prove in the paper that prediction estimates obtained by the semantic probabilistic inference are certainly not worse than the estimates obtained by the logical inference with the parallel calculation of these estimates.

Keywords
prediction, probabilistic inference, semantics, logical programs, probabilistic logic programming
UDC
004.85, 519.68

MSC

68T27, 68Q87

DOI

https://doi.org/10.26516/1997-7670.2017.21.33

References

1. Vityaev E.E. Izvlechenie znaniy iz dannykh. Komp’yuternoe poznanie. Modelirovanie kognitivnykh protsessov[Extracting knowledge from data. Computer cognition. Modeling of cognitive processes]. Novosibirsk, NSU, 2006. 293 p.

2. Malykh A., Mantsivoda A. Document modeling. Izv. Irkutsk. Gos. Univ. Ser. Mat., 2017, vol. 21. (in Russian)

3. Adams Er.W. The logic of conditionals. An application of probability to deductive logic. Synthese Library, vol. 86, 1975.

4. Apt K.R. Introduction to logic programming. Computer Science. Department of Software Technology, Report CS-R874.

5. Van Emden M.N. Quantitative deduction and its fixpoint theory.J. Logic Programming, 1986, vol. 3, no 1, pp. 37-53. https://doi.org/10.1016/0743-1066(86)90003-8

6. Fitting M.C. Logic Programming on a Topological Bilattices. Fundamenta Informatica, 1988, vol. 11, pp. 209-218.

7. Gaifman H. Concerning measure in first order calculi. Israel journal of Math, 1964, vol. 2, no 1, pp. 1-18. https://doi.org/10.1007/BF02759729

8. T.Hailperin, Probability Logic. Notre Dame J. of Formal Logic, vol. 25, no 3, 1984, pp.198-212. https://doi.org/10.1305/ndjfl/1093870625

9. Kifer M., Subrahmanian V.S. Theory of Generalized Annotated Logic Programming and its Applications. Research Report, University of Maryland, USA, 1990.

10. Ng R.T., Subrahmanian V.S. Probabilistic reasoning in Logic Programming. Proc. 5th Symposium on Methodologies for Intelligent Systems, Knoxville, North-Holland, 1990, pp. 9-16.

11. Kovalerchuk Boris, Vityaev Evgenii. Data Mining in Finance: Advances in Relational and Hybrid Methods. Kluwer Acad. Publ., 2000. 308 p.

12. Matthew M. Huntbach An improved vershion of Shapiro’s Model Inference system. Third International conference on Logic Programming (Lecture Notes in Computer Science, vol. 225), pp.180-187.

13. Ng R.T., Subrahmanian V.S. Annotation Variables and Formulas in Probabilistic Logic Programming. Technical report CS TR-2563, University of Maryland, 1990.

14. Nils J. Nillson. Probability logic. Artif. Intell., 1986, vol. 28, no 1, pp. 71-87. https://doi.org/10.1016/0004-3702(86)90031-7

15. Scott D.S., Krauss P. Assigning Probabilities to Logical Formulas. Aspects of Inductive Logic, (ed. J. Hintikka, P. Suppes), N. Holland, 1966, pp. 219-264. https://doi.org/10.1016/S0049-237X(08)71672-0

16. Shapiro E. Logic Programs with Uncertainties: A Tool for Implementing Expert Systems. Proc. IJCAI ’83, Williams Kauffman, 1983, pp. 529-532.

17. Goncharov S.S., Ershov Yu.L., Sviridenko D.I. Semantic programming. 10th World Congress Information Processing 86, Dublin, Oct., 1986, Amsterdam, 1986, pp. 1093-1100.

18. Shapiro E. Algorithmic Program Debugging. MIT Press, 1983, 204 p.


Full text (russian)