«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2014. Vol. 10

On Solvability of Degenerate Linear Evolution Equations with Memory Effects

Author(s)
V. E. Fedorov, L. V. Borel
Abstract

By the methods of the operators semigroups theory a degenerate linear evolution equation with memory in a Banach space is reduced to a system of two equations. One of them is resolved with respect to the derivative, another has a nilpotent operator at the derivative. A problem with a given history for the first of the equations with memory is brought to the Cauchy problem for stationary equations system in a wider space. It allowed to obtain conditions of the unique solution existence for the problem, including solutions with a greater smoothness, by the methods of the classical operators semigroups theory. Thus unique solvability of the problem with a given history for a degenerate linear evolution equation with memory was researched with using some restrictions for the kernel of the memory integral operator. Besides, an analogous problemь with generalized Showalter – Sidorov type condition on the history of the system was studied. General results were used for investigation of an initial boundary value problem for the linearized Oskolkov integro-differential system of equations, descibing the dynamics of the high order Kelvin – Voight fluid.

Keywords
equation with memory, degenerate evolution equation, operator semigroup, initial boundary value problem, Kelvin –Voight fluid
UDC
517.95
References

1. Falaleev M. V. Integro-differentsial’nye uravneniya s fredgol’movym operatorom pri starshey proizvodnoy v banakhovykh prostranstvakh i ikh prilozheniya (in Russian) [Integro-Differential Equations with Fredholm Operator at Highest Derivative in Banach Spaces and Their Applications]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Matematika [News of Irkutsk State University, Ser. Mathematics], 2012, vol. 5, no. 2, pp. 90-102.

2. Falaleev M. V., Orlov S. S. Degenerate Integro-Differential Operators in Banach Spaces and Their Applications. Russian Math. (Iz. VUZ), 2011, vol. 55, no. 10, pp. 59-69.

3. Falaleev M. V., Orlov S. S. Vyrozhdennye integro-differentsial’nye uravneniya spetsial’nogo vida v banakhovykh prostranstvakh i ikh prilozheniya (in Russian) [Degenerate Integro-Differential Equations of Special Form in Banach Spaces and Their Applications]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Ser. Matematicheskoe modelirovanie i programmirovanie [Herald of South Ural State University, Ser. Mathematical Modeling and Programming], 2010, issue 6, no. 35 (211), pp. 104-109.

4. Falaleev M. V., Orlov S. S. Integro-differentsial’nye uravneniya s vyrozhdeniem v banakhovykh prostranstvakh i ikh prilozheniya v matematicheskoy teorii uprugosti (in Russian) [Integro-Differential Equations with Degeneration in Banach Spaces and Their Applications in Mathematical Elasticity Theory]. Izvestiya Irkutskogo gosudarstvennogo universiteta. Ser. Matematika [News of Irkutsk State University], 2011, vol. 4, no. 1, pp. 118-134.

5. Fedorov V. E., Omelchenko O. A. Inhomogeneous Degenerate Sobolev Type Equations with Delay. Siberian Mathematical Journal, 2012, vol. 53, no. 2, pp. 418-429.

6. Fedorov V. E., Omelchenko O. A. Linear Equations of the Sobolev Type with Integral Delay Operator. Russian Math. (Iz. VUZ), 2014, vol. 58, no. 1, pp. 60-69.

7. Fedorov V. E., Stakheeva O. A. O razreshimosti lineynykh uravneniy sobolevskogo tipa s effektom pamyati (in Russian) [On Solvability of Linear Sobolev Type Equations with Memory Effect]. Neklassicheskie uravneniya matematicheskoy fiziki[Nonclassical Mathematical Physics Equations], Novosibirsk, Sobolev Institute of Mathematics of SB RAS, 2010, pp. 245-261.

8. Gatti S., Grasselli M., Pata V., Squassina M. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete and Continuous Dynamical Systems, 2005, vol. 12, no. 5, pp. 1019-1029.

9. Giorgi C., Marzocchi A. Asymptotic behavior of a semilinear problem in heat conduction with memory. Nonlinear Differ. Equ. Appl., 1998, vol. 5, pp. 333-354.

10. Gurtin M. E., Pipkin A. C. A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal., 1968, vol. 31, pp. 113-126.

11. Kato T. Perturbation Theory for Linear Operators, Berlin–Heidelberg–New York, Springer-Verlag, 1966.

12. Mizokhata S. Teoriya uravneniy s chastnymi proizvodnymi (in Russian) [Theory of Partial Differential Equations], Moscow, Mir, 1977, 504 p.

13. Oskolkov A. P. Nachal’no-kraevye zadachi dlya uravneniy dvizheniya zhidkostey Kelvina – Voighta i zhidkostey Oldroyda (in Russian) [Initial Boundary Value Problems for Motion Equations of Kelvin–Voight and Oldroyd Fluids]. TrudyMat. Instituta AN SSSR [Proceedings of Steklov Mathematics Institute of USSR Academy of Sciences], 1988, vol. 179, pp. 126-164.

14. Showalter R. E. Nonlinear degenerate evolution equations and partial differentialequations of mixed type. SIAM J. Math. Anal., 1975, vol. 6, no. 1, pp. 25-42.

15. Sidorov N. A. A Class of Degenerate Differential Equations with Convergence. Mathematical Notes, 1984, vol. 35, no. 4, p. 300-305.

16. Sidorov N., Loginov B., Sinitsyn A., Falaleev M. Lyapunov – Schmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Kluwer Acad. Publ., 2002, 548 p.

17. Stakheeva O. A. Local’naya razreshimost’ odnogo klassa lineynykh uravneniy s pamyat’yu (in Russian) [Local Solvability of a Class of Linear Equations with Memory]. Vestnik Chelyabinskogo gosudarstvennogo universiteta. Ser.Matematika. Mekhanika. Informatika [Herald of Chelyabinsk State University. Ser. Mathematics, Mechanics, Informatics], 2009, issue 11, no. 20 (158), pp. 70-76.

18. Sviridyuk G. A., Fedorov V. E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht–Boston, VSP, 2003, 216+vii p.


Full text (russian)