«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 54

The Task-Based Approach: A New Paradigm for Building Trustworthy Artificial Intelligence

Author(s)

Andrey V. Nechesov1, Evgenii E. Vityaev1,2, Sergey S. Goncharov1,2, Dmitry I. Sviridenko1 

The Artificial Intelligence Research Center of Novosibirsk State University, Novosibirsk, Russian Federation

Sobolev institute of mathematics SB RAS, Novosibirsk, Russian Federation

Abstract
While AI systems excel at reasoning within formal frameworks, their tendency to hallucinate remains a critical challenge. This paper proposes a task-based approach to enhance reliability. By focusing on the specific task and its resolution criteria, we ensure AI solutions are informed by a deep understanding of the problem’s inherent limitations, including its defining axioms and theorems. This comprehension of the problem’s structure and constraints is key to mitigating hallucination and building trustworthy AI.
About the Authors

Andrey V. Nechesov, Cand. Sci. (Phys.-Math.), Novosibirsk State University, Novosibirsk, 630090, Russian Federation, nechesoff@gmail.com

Evgenii E. Vityaev, Dr. Sci. (Phys.–Math.), Prof., Novosibirsk State University, Novosibirsk, 630090, Russian Federation, vityaev@math.nsc.ru

Sergey S. Goncharov, Academician RAS, Prof., Novosibirsk State University, Novosibirsk, 630090, Russian Federation, s.s.goncharov@math.nsc.ru

Dmitry I. Sviridenko, Dr. Sci. (Phys.–Math.), Prof., Novosibirsk State University, Novosibirsk, 630090, Russian Federation, dsviridenko47@gmail.com

For citation
Nechesov A. V., Vityaev E. E., Goncharov S. S., Sviridenko D. I. The TaskBased Approach: A New Paradigm for Building Trustworthy Artificial Intelligence. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 54, pp. 96–112. https://doi.org/10.26516/1997-7670.2025.54.96
Keywords
artificial intelligence, machine learning, agent-based approach, task approach, computability, semantic modeling
UDC
519.7
MSC
68W30, 68U35
DOI
https://doi.org/10.26516/1997-7670.2025.54.96
References
  1. Anokhin P.K. Principled questions of the theory of functional systems. Philosophical aspects of the theory of functional systems, Moscow, 1978, pp. 49–106. 
  2. Demin A.V., Vityaev E.E. Learning in a virtual model of the c. elegans nematode for locomotion and chemotaxis, biologically inspired. Biologically Inspired Cognitive Architectures, 2014, vol. 7. 
  3. Dolgov N. Development of a virtual machine for executing l*-programs pf a pcomplete logical language in decentralized enviroment. ZONT, 2023. 
  4. Ershov Y., Samokhvalov K. Sovremennaya filosofiya matematiki: nedomoganiya i lechenie. Parallel Publ., 2007. 
  5. Gavrilin D.N., Mantsivoda A.V. Object ontologies as a priori models for logical-probabilistic machine learning. The Bulletin of Irkutsk state university. Series Mathematics, 2025, vol. 51, pp. 116–129. https://doi.org/10.26516/1997-7670.2025.51.116
  6. Goncharov S.S., Nechesov A. Functional variant of polynomial analogue of gandy’s fixed point theorem. Mathematics, 2024, vol. 12. https://doi.org/10.3390/math12213429 
  7. Goncharov S., Sviridenko D., Vityaev E. Task approach to artificial intelligence. CEUR, 2642, 2020. 
  8. Gumirov V., Matyukov P., Palchunov D. Semantic domain specific languages. IEEE, 2018. 
  9. Halpern J.Y. An analysis of first-order logic of probability. Artificial Intelligence, 1990, vol. 46. 
  10. Hempel C.G. Aspects of scientific explanation. Aspects of Scientific Explanation and other Essays. Free Press, 1965. 
  11. Hempel C.G. Maximal specificity and lawlikeness in probabilistic explanation. Philosophy of Science, 1968, vol. 35. 
  12. Kazakov I.A., Kustova I.A., Mantsivoda A.V. Document modeling: methodology and applications. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 32. 
  13. Mantsivoda A.V., Ponomaryov D.K. Towards semantic document modeling of business processes. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 29. 
  14. Mantsivoda A.V., Ponomaryov D.K. A Formalization of Document Models with Semantic Modelling. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 27, pp.36-54. https://doi.org/10.26516/1997-7670.2019.27.36 
  15. Mantsivoda A.V., Ponomaryov D.K. On termination of transactions over semantic document models. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 41. 
  16. Nechesov A. Learning theory and knowledge hierarchy for artificial intelligence systems. Sib. Adv. Math., 2023, vol. 33, pp. 299–302. https://doi.org/10.1109/SIBIRCON63777.2024.10758505 
  17. Nechesov A., Ruponen J. Empowering government efficiency through civic intelligence: Merging artificial intelligence and blockchain for smart citizen proposals. Technologies, 2024, vol. 12(271). https://doi.org/10.3390/technologies12120271
  18. Nechesov A., Dorokhov I, Ruponen J. Virtual cities: From digital twins to autonomous ai societies. IEEE Access, 2025, vol. 13, pp. 13866—13903. https://doi.org/10.1109/ACCESS.2025.3531222
  19. Russell S., Norvig P. Artificial intelligence: a modern approach. Williams, 2006. 
  20. Sviridenko D. Semantic smart wallets. In International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, 2019, pp. 991–994. 
  21. Sudakov K.V. The general theory of functional systems. Moscow, Medicine, 1984. 
  22. Vityaev E.E. Semantic probabilistic output of predictions. The Bulletin of Irkutsk State University. Series Mathematics, 2017, vol. 21. 
  23. Vityaev E. The logic of prediction. Proceedings of the 9th Asian Logic Conference, World Scientific Publishers, 2006, pp. 263–276. 
  24. Vityaev E. Logika raboty mozga (Logic of brain activity). Approaches to mind modeling. Moscow, 2014, pp. 120–153. 
  25. Vityaev E. Purposefulness as a principle of brain activity. Nadin M. (ed.) Anticipation: Learning from the Past. Cognitive Systems Monographs, Springer, 2015, pp. 231–254. 
  26. Vityaev E. Mathematical probability model of cognitome and functional systems. Proceedings of the Conference ”Interdisciplinary interaction of algebraic Biology, systems Theory and artificial Intelligence, Moscow, 2021, pp. 238–292. 
  27. Vityaev E., Goncharov S., Sviridenko D. Task-driven approach to artificial intelligence. Cognitive Systems Research, 2023, vol. 81. 
  28. Vityaev E.E., Kovalerchuk B.Y. Relational methodology for data mining and knowledge discovery. Intelligent Data Analysis, 2008, vol. 12. 
  29. Vityaev E., Kovalerchuk B. Ontological data mining. Uncertainty Modeling: Dedicated to Professor Boris Kovalerchuk on his Anniversary, Springer, 2017, pp. 277–292. 
  30. Vityaev E., Odintsov S. How to predict consistently? Trends in Mathematics and Computational Intelligence, Springer, 2019, vol. 796, pp. 35–41. 
  31. Web site Scientific Discovery. Available at: http://old.math.nsc.ru/AP/ScientificDiscovery/index.html.

Full text (english)