«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2025. Vol 52

Weak Solution to KWC Systems of Pseudo-parabolic Type

Author(s)
Daiki Mizuno1

1Chiba University, Chiba, Japan

Abstract
In this paper, a class of systems of pseudo-parabolic PDEs is considered. These systems (S)ε are derived as a pseudo-parabolic dissipation system of Kobayashi– Warren–Carter energy, proposed by [Kobayashi et al., Physica D, 140, 141–150 (2000)], to describe planar grain boundary motion. In this context, ε is a value to control the relaxation of singular diffusivity. These systems have been studied in [Antil et al., SIAM J. Math. Anal., 56(5), 6422–6455], and solvability, uniqueness and strong regularity of the solution have been reported under the setting that the initial data is sufficiently smooth. Meanwhile, in this paper, we impose weaker regularity on the initial data, and work on the weak formulation of the systems. In this light, we set our goal of this paper to prove two theorems, concerned with the existence and the uniqueness of weak solution to (S)ε, and the continuous dependence with respect to the index ε, initial data and forcings.
About the Authors
Daiki Mizuno, Postgraduate, Chiba University, Chiba, 263-8522, Japan, d-mizuno@chiba-u.jp
For citation
Mizuno D. Weak Solution to KWC Systems of Pseudo-parabolic Type. The Bulletin of Irkutsk State University. Series Mathematics, 2025, vol. 52, pp. 88–104.

https://doi.org/10.26516/1997-7670.2025.52.88

Keywords
planar grain boundary motion, pseudo-parabolic KWC system, energydissipation, singular diffusion, time-discretization
UDC
517.9
MSC
35G61, 35J57, 35J62, 35K70, 74N20
DOI
https://doi.org/10.26516/1997-7670.2025.52.88
References
  1. Ambrosio L., Fusco N., Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. New York, The Clarendon Press, Oxford University Press, 2000. https://doi.org/10.1093/oso/9780198502456.001.0001
  2. Antil H., Kubota S., Shirakawa K., Yamazaki N. Constrained optimization problems governed by PDE models of grain boundary motions. Adv. Nonlinear Anal., 2022, vol. 11, no. 1, pp. 1249–1286. https://doi.org/10.1515/anona-2022-0242
  3. Antil H., Mizuno D., Shirakawa K. Well-posedness of a pseudo-parabolic KWC system in materials science. SIAM J. Math. Anal., 2024, vol. 56, no. 5, pp. 6422– 6455. https://doi.org/10.1137/24M163952X
  4. Berselli L.C., Bisconti L. On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models. Nonlinear Anal., 2012, vol. 75, no. 1, pp. 117–130. https://doi.org/10.1016/j.na.2011.08.011
  5. Cao Y., Lunasin E.M., Titi E.S. Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci., 2006, vol. 4, no. 4, pp. 823–848. http://projecteuclid.org/euclid.cms/1175797613
  6. Ito A., Kenmochi N., Yamazaki N. A phase-field model of grain boundary motion. Appl. Math., 2008, vol. 53, no. 5, pp. 433–454. https://doi.org/10.1007/s10492-008-0035-8
  7. Kobayashi R., Warren J.A., Carter W.C. A continuum model of grain boundaries. Phys. D, 2000, vol. 140, no. 1–2, pp. 141–150. https://doi.org/10.1016/S0167-2789(00)00023-3
  8. Kobayashi R., Warren J.A., Carter W.C. Grain boundary model and singular diffusivity. GAKUTO Internat. Ser. Math. Sci. Appl., 2000, vol. 14, pp. 283–294.
  9. Kubota S., Shirakawa K. Periodic solutions to Kobayashi–Warren–Carter systems. Adv. Math. Sci. Appl., 2023, vol. 32, pp. 511–553.
  10. Moll S., Shirakawa K. Existence of solutions to the Kobayashi–Warren–Carter system. Calc. Var. Partial Differential Equations, 2014, vol. 51, no. 3–4, pp. 621– 656. https://doi.org/10.1007/s00526-013-0689-2
  11. Moll S., Shirakawa K., Watanabe H. Energy dissipative solutions to the Kobayashi– Warren–Carter system. Nonlinearity, 2017, vol. 30, no. 7, pp. 2752–2784. https://doi.org/10.1088/1361-6544/aa6eb4
  12. Moll S., Shirakawa K., Watanabe H. Kobayashi-Warren-Carter type systems with nonhomogeneous Dirichlet boundary data for crystalline orientation. Nonlinear Anal., 2022, vol. 217, paper no. 112722. https://doi.org/10.1016/j.na.2021.112722
  13. Nakayashiki R., Shirakawa K. Kobayashi-Warren-Carter system of singular type under dynamic boundary condition. Discrete Contin. Dyn. Syst. Ser. S, 2023, vol. 16, no. 12, pp. 3746–3783. https://doi.org/10.3934/dcdss.2023162
  14. Oskolkov A.P. The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1973, vol. 38, pp. 98–136.
  15. Oskolkov A.P. On the theory of unsteady flows of Kelvin-Voigt fluids. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1982, vol. 115, pp. 191–202.
  16. Simon J. Compact sets in the space Lp (0, T ; B). Ann. Mat. Pura Appl. (4), 1987, vol. 146, pp. 65–96. https://doi.org/10.1007/BF01762360
  17. Yamazaki N. Global attractors for non-autonomous phase-field systems of grain boundary motion with constraint. Adv. Math. Sci. Appl., 2013, vol. 23, no. 1, pp. 267–296

Full text (english)