«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2024. Vol 50

Integration of the Loaded Negative Order Nonlinear Schrodinger Equation in the Class of Periodic Functions

Author(s)
Muzaffar M. Khasanov1, Ilkham D. Rakhimov1, Donyor B. Azimov1

1Urgench State University, Urgench, Uzbekistan

Abstract
In this paper, we consider the loaded negative order nonlinear Schrodinger equation (NSE) in the class of periodic functions. It is shown that the loaded negative order nonlinear Schrodinger equation can be integrated by the inverse spectral problem method. The evolution of the spectral data of the Dirac operator with a periodic potential associated with the solution of the loaded negative order nonlinear Schrodinger equation is determined. The results obtained make it possible to apply the inverse problem method to solve the loaded negative order nonlinear Schrodinger equation in the class of periodic ones. Important corollaries are obtained about the analyticity and period of the solution concerning the spatial variable.
About the Authors

Muzaffar M. Khasanov, Cand. Sci. (Phys.-Math.), Assoc. Prof., Urgench State University, Urgench, 220100, Uzbekistan, hmuzaffar@mail.ru

Ilkham D. Rakhimov, Cand. Sci. (Phys.-Math.), Urgench State University, Urgench, 220100, Uzbekistan, ilxom@urdu.uz

Donyor B. Azimov, Master (Phys.-Math.), Junior Researcher, Urgench State University, Urgench, 220100, Uzbekistan, doniyor.azimov.97@bk.ru

For citation

Khasanov M. M., Rakhimov I. D., Azimov D. B. IIntegration of the Loaded Negative Order Nonlinear Schrodinger Equation in the Class of Periodic Functions. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 50, pp. 51–65.

https://doi.org/10.26516/1997-7670.2024.50.51

Keywords
loaded negative order nonlinear Schrodinger equation, soliton, Dirac operator, inverse spectral problem, Dubrovin’s system of equations, trace formulas
UDC
517.957
MSC
35P25, 35P30, 35Q51, 35Q53, 37K15
DOI
https://doi.org/10.26516/1997-7670.2024.50.51
References
  1. Akhmediev N.N., Korneev V.I. Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theor Math Phys, 1986, vol. 69, pp. 1089–1093. https://doi.org/10.1007/BF01037866
  2. Baltaeva I.I., Rakhimov I.D., Khasanov M.M. Exact traveling wave solutions of the loaded modified Korteweg-de vries equation. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 85–95. https://doi.org/10.26516/1997- 7670.2022.41.85
  3. Currie S., Roth T., Watson B. Borg’s periodicity theorems for first-order selfadjoint systems with complex potentials. Proc. Edinb. Math. Soc., 2017, vol. 60, pp. 615–633. https://doi.org/10.1017/S0013091516000389
  4. Djakov P.B., Mityagin B.S. Instability zones of periodic 1-dimensional Schrodinger and Dirac operators. Russian Math. Surveys, 2006, vol. 61, pp. 663–766. https://doi.org/10.1070/RM2006V061N04ABEH004343
  5. Gomes J.F., de Melo G.R., Zimerman A.H. A class of mixed integrable models. Journal of Physics A: Mathematical and Theoretical, 2009, vol. 42, pp. 1–11. https://doi.org/10.1088/1751-8113/42/27/275208
  6. Gomes J.F., Starvaggi F.G., Melo G.R., Zimerman A.H. Negative even grade mKdV hierarchy and its soliton solutions. J. Phys. A: Math. Theor., 2009, vol. 42, pp. 445204. doi:10.1088/1751-8113/42/44/445204
  7. Hasanov A. B., Hasanov M. M. Integration of the nonlinear Shrodinger equation with an additional term in the class of periodic functions. Theoretical and Mathematical Physics, 2019, vol. 199, pp. 525–532. https://doi.org/10.1134/S0040577919040044
  8. Its A.R. On the connection between soliton and finite-zone solutions of the nonlinear Schrodinger equation. Spectral theory. Wave processes. - L.: Publishing House of Leningrad State University, 1982, vol. 10, pp. 118–137.
  9. Jingqun Wang, Lixin Tian, Yingnan Zhang Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability. Physics Letters A, 2019, vol. 383, pp. 1689–1697. https://doi.org/10.1016/j.physleta.2019.02.042
  10. Khasanov A.B., Ibragimov A.M. On the inverse problem for the Dirac operator with periodic potential. Uzbek Mat. J., 2001, pp. 48–55.
  11. Khasanov A.B., Yakhshimuratov A. An analogue of G. Borg’s inverse theorem for the Dirac operator. Uzbek Math. J., 2000, vol. 3, pp. 40–46.
  12. Khasanov M.M., Rakhimov I.D. Integration of the KdV equation of negative order with a free term in the class of periodic functions. Chebyshevskii Sbornik, 2023, vol. 24, pp.266–275 http://doi.org/10.22405/2226-8383-2023-24-2-266-275
  13. Kundu A., Sahadevan R., Nalinidevi L. Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability. Journal of Physics A: Mathematical and Theoretical, 2009, vol. 42, pp. 1–13. https://doi.org/10.1088/1751-8113/42/11/115213
  14. Levitan B.M., Sargsyan I.S. Sturm–Liouville and Dirac Operators. Mathematics and Its Applications (Soviet Series) Springer, Dordrecht, 1990, vol. 59.
  15. Lou S. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations. Journal of Mathematical Physics, 1994, vol. 35, pp. 2390–2396. http://doi.org/10.1063/1.530509
  16. Misjura T.V. Characterization of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator [in Russian]. Theory of Functions, Functional Analysis and Their Applications (V. A. Marchenko, ed.), Publishing House of Kharkiv State University named after A. M. Gorky, Kharkiv, 1978, pp. 90–101.
  17. Qiao Z., Strampp W. Negative order MKdV hierarchy and a new integrable Neumann-like system. Physica A: Statistical Mechanics and its Applications, 2002, vol. 313, pp. 365–380.
  18. Urazboev G.U., Baltaeva I.I., Atanazarova Sh.E. Soliton Solutions of the Negative Order Modified Korteweg – de Vries Equation. The Bulletin of Irkutsk State University. Series Mathematics, 2024, vol. 47, pp. 63–77. https://doi.org/10.26516/1997-7670.2024.47.63
  19. Urazboev G.U., Baltaeva I.I., Ismoilov O.B. Integration of the negative order Korteweg–de Vries equation by the inverse scattering method. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2023, vol. 33, pp. 523–533. https://doi.org/10.35634/vm230309
  20. Urazboev G.U., Baltaeva I.I., Rakhimov I.D. The Generalized (G’/G)-Expansion Method for the Loaded Korteweg–de Vries Equation. J. Appl. Ind. Math., 2021, vol. 15, pp. 679–685. https://doi.org/10.1134/S1990478921040116
  21. Urazboev G.U., Hasanov M.M. Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2022, vol. 32, pp. 228–239. https://doi.org/10.35634/vm220205
  22. Urazboev G.U., Khasanov M.M., Baltaeva I.I. Integration of the negative order Korteweg–de Vries equation with a special source. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 44, pp. 31–43. https://doi.org/10.26516/1997-7670.2023.44.31
  23. Urazboev G.U., Khasanov M.M., Rakhimov I.D. Generalized (G’/G)- expansion method and its applications to the loaded Burgers equation. Azerbaijan journal of mathematics, 2023, vol. 13, pp. 248–257. https://doi.org/10.59849/2218- 6816.2023.2.248
  24. Urazboev G.U., Yakhshimuratov A.B., Khasanov M.M. Integration of negativeorder modified Korteweg–de Vries equation in a class of periodic functions. Theoret. and Math. Phys., 2023, vol. 217, pp. 1689–1699. https://doi.org/10.4213/tmf10580
  25. Verosky J.M. Negative powers of Olver recursion operators. Journal of Mathematical Physics, 1991, vol. 32, pp. 1733–1736. https://doi.org/10.1063/1.529234
  26. Yakhshimuratov A.B., Matyokubov M.M. Integration of a loaded Korteweg-de Vries equation in a class of periodic functions. Russ Math., 2016, vol. 60, pp. 72–76. https://doi.org/10.3103/S1066369X16020110

Full text (english)