List of issues > Series «Mathematics». 2024. Vol 47
Soliton Solutions of the Negative Order Modified
Korteweg – de Vries Equation
Author(s)
Gayrat U. Urazboev1
,
Iroda I. Baltaeva1
,
Shoira E. Atanazarova1,2



1Urgench State University, Urgench, Uzbekistan
2Khorezm branch of V. I. Romanovski Institute of Mathematics, Uzbekistan Academy of Science, Urgench, Uzbekistan
Abstract
In this paper, we study the negative order modified Korteweg-de Vries
(nmKdV) equation in the class of rapidly decreasing functions. In particular, we show
that the inverse scattering transform technique can be applied to obtain the time dependence of scattering data of the operator Dirac with potential being the solution of the
considered problem. We demonstrate the explicit representation of one soliton solution
of nmKdV based on the obtained results.
About the Authors
Gayrat U. Urazboev, Dr. Sci. (Phys.-Math.), Prof., Urgench State University, Urgench, 220100, Uzbekistan, gayrat71@mail.ru
Iroda I. Baltaeva, Cand. Sci. (Phys.-Math.), Assoc. Prof., Urgench State University, Urgench, 220100, Uzbekistan, iroda-b@mail.ru
Shoira E. Atanazarova, Master (Phys.-Math.), Junior Researcher, Khorezm Branch of V. I. Romanovski Institute of mathematics, Uzbekistan Academy of Science, Urgench, 220100, Uzbekistan, atanazarova94@gmail.com
For citation
Urazboev G. U., Baltaeva I. I., Atanazarova Sh. E. Soliton Solutions of the
Negative Order Modified Korteweg – de Vries Equation. The Bulletin of Irkutsk State
University. Series Mathematics, 2024, vol. 47, pp. 63–77.
https://doi.org/10.26516/1997-7670.2024.47.63
Keywords
negative order modified Korteweg – de Vries equation, soliton, inverse
scattering transform, scattering data, potential, reflection coefficient
UDC
517.957
MSC
35P25, 35P30, 35Q51, 35Q53, 37K15
DOI
https://doi.org/10.26516/1997-7670.2024.47.63
References
- Ablowitz M.J., Been J.B., Carr L.D. Fractional integrable and related discrete nonlinear Schrodinger equations. Physics Letter A, 2022, vol. 452, pp. 128459. https://doi.org/10.1016/j.physleta.2022.128459
- Ablowitz M.J., Kaup D.J., Newell A.C., Segur H. The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics,1974, vol. LII, no.4, pp. 249–315.
- Baltaeva I.I., Rakhimov I.D., Khasanov M.M. Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 85–95. https://doi.org/10.26516/1997-7670.2022.41.85
- Chen J. Quasi-periodic solutions to the negative-order KdV hierarchy. Int. J. Geom. Methods Mod. Phys, 2018, vol. 15, no. 3, 1850040.https://doi.org/10.1142/S0219887818500408
- Demontis F. Exact solutions of the modified Korteweg–de Vries equation. Theor. Math. Phys., 2011, vol. 168, pp. 886–897. https://doi.org/10.1007/s11232-011-0072-4
- Urazboev G., Babadjanova A.K. On the integration of the matrix modified Korteweg-de Vries equation with a self-consistent source. Tamkang Journal of Mathematics, 2019, vol. 50, pp. 281–291.https://doi.org/10.5556/j.tkjm.50.2019.3355
- Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for Solving the Korteweg de Vries Equation. Physical Review Letters, 1967, vol. 19, pp. 1095–1097.http://dx.doi.org/10.1103/PhysRevLett.19.1095
- Jingqun Wang, Lixin Tian, Yingnan Zhang. Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability. Physics Letters A, 2019, vol. 383, pp. 1689–1697. https://doi.org/10.1016/j.physleta.2019.02.042
- Khasanov A.B., Allanazarova T.Zh. On the modified Korteweg-de Vries equation with loaded term. Ukrainian Mathematical Journal, 2022, vol. 73, pp. 1783–1809.https://doi.org/10.1007/s11253-022-02030-4
- Khasanov A.B., Yakhshimuratov A.B. The Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions. Theor. Math. Phys., 2010, vol. 164, pp. 1008–1015.https://doi.org/10.4213/tmf6535
- Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl.Math., 1968, vol. 21, pp. 467–490.https://doi.org/10.1002/cpa.3160210503
- Olver P.J. Evolution equations possessing infinitely many symmetries. J.Math.Phys., 1977, vol. 18, pp. 1212–1215. https://doi.org/10.1063/1.523393
- Qiao Z., Li J. Negative-order KdV equation with both solitons and kink wave solutions. Europhysics Letters, 2011, vol. 94, no. 5, 50003.https://doi.org/10.1209/0295-5075/94/50003
- Qiao Z.J., Fan E.G. Negative-order Kortewe-de Vries equations. Phys. Rev., 2012, vol. 86, 016601. https://doi.org/10.1103/PHYSREVE.86.016601
- Reyimberganov A.A., Rakhimov I.D. The soliton solution for the nonlinear Schrodinger equation with self-consistent source. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 36, pp. 84–94.https://doi.org/10.54708/23040122_2022_14_1_77
- Shengyang Yuan, Jian Xu. On a Riemann-Hilbert problem for the negative – order KdV equation. Applied Mathematics Letters, 2022, vol. 132, 108106.https://doi.org/10.1016/j.aml.2022.108106
- Urazboev G.U., Khasanov M.M., Baltaeva I.I. Integration of the Negative Order Korteweg-de Vries Equation with a Special Source. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 44, pp. 31–43. (in Russian)https://doi.org/10.26516/1997-7670.2023.44.31
- Urazboev G.U., Khasanov M.M. Integration of the negative order Korteweg- De Vries equation with a self-consistent source in the class of periodic functions. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2022, vol. 32, pp. 228–239. https://doi.org/10.35634/vm210209
- Urazboev G.U, Khasanov A.B. “Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and “Steplike” Initial Data”. Theoret. and Math. Phys., 2001, vol. 129, pp. 38–54. https://doi.org/10.4213/tmf518
- Urazboev G.U., Babadjanova A.K., Zhuaspayev T.A. Integration of the periodic Harry Dym equation with a source. Wave Motion., 2022, vol. 113, 102970.https://doi.org/10.1016/j.wavemoti.2022.102970
- Urazboev G.U., Baltaeva I.I. Integration of the Camassa-Holm equation with a self-consistent source. Ufa Mathematical journal, 2022, vol. 14, pp. 77–86.https://doi.org/10.54708/23040122_2022_14_1_77
- Verosky J.M. Negative powers of Olver recursion operators. J. Math. Phys., 1991, vol. 32, pp. 1733–1736. https://ui.adsabs.harvard.edu/link_gateway/1991JMP32.1733V/doi:10.1063/1.529234
- Wadati M. The modified Korteweg–de Vries equation. J. Phys. Soc. Jpn., 1973, vol. 34, pp. 1289–1296.https://doi.org/10.1143/JPSJ.34.1289
- Wazwaz A.M., Xu G.Q. Negative order modified KdV equations: multiple soliton and multiple singular soliton solutions. Mathematical methods in the Applied Sciences, 2016, vol. 39.http://dx.doi.org/10.1002/mma.3507
- Zakharov V.E., Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz., 1971. vol. 61, pp. 118–134.
- Zhang Da-Jun, Zhao Song-Lin, Sun Ying-Ying, Zhou Jhou. Solutions to the modified Korteweg–de Vries equation. Reviews in Mathematical Physics, 2014, vol. 26, 1430006. http://dx.doi.org/10.1142/S0129055X14300064