«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2023. Vol 44

Integration of the Negative Order Korteweg-de Vries Equation with a Special Source

Author(s)
Gayrat U. Urazboev1, Muzaffar M. Khasanov1, Iroda I. Baltaeva1

1Urgench State Univeresity, Urgench, Uzbekistan

Abstract
In this paper, we consider the negative order Korteweg-de Vries equation with a self-consistent source corresponding to the eigenvalues of the corresponding spectral problem. It is shown that the considered equation can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm-Liouville operator with a periodic potential associated with the solution of the considered equation is determined. The results obtained make it possible to apply the inverse problem method for solving the negative order Korteweg-de Vries equation with a self-consistent source corresponding to the eigenvalues of the corresponding spectral problem.
About the Authors

Gayrat U. Urazboev, Dr. Sci. (Phys.–Math.), Urgench State University, Urgench, 220100, Uzbekistan, gayrat71@mail.ru

Muzaffar M. Khasanov, Cand. Sci. (Phys.Math.), Assoc., Urgench State University, Urgench, 220100, Uzbekistan, hmuzaffar@mail.ru

Iroda I. Baltaeva, Cand. Sci. (Phys.Math.), Assoc., Urgench State University, Urgench, 220100, Uzbekistan, iroda-b@mail.ru

For citation
Urazboev G. U., Khasanov M. M., Baltaeva I. I. Integration of the Negative Order Korteweg-de Vries Equation with a Special Source. The Bulletin of Irkutsk State University. Series Mathematics, 2023, vol. 44, pp. 31–43. (in Russian) https://doi.org/10.26516/1997-7670.2023.44.31
Keywords
negative order Korteweg-de Vries equation, self-consistent source, inverse spectral problem, system of Dubrovin-Trubovitz equations, trace formulas
UDC
517.946
MSC
35P25, 35P30, 35Q51, 35Q53, 37K15
DOI
https://doi.org/10.26516/1997-7670.2023.44.31
References
  1. Dubrovin B.A. Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials. Funct. Anal. Its Appl., 1975, vol. 9, pp. 215–223. https://doi.org/10.1007/BF01075598
  2. Dubrovin B.A., Novikov S.P. Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Journal of Experimental and Theoretical Physics, 1975, vol. 67, pp. 1058-1063.
  3. Its A.R., Matveev V.B. Schrodinger operators with finite-gap spectrum and Nsoliton solutions of the Korteweg-de Vries equation. Theor. Math. Phys., 1975, vol. 23, pp. 343–355. https://doi.org/10.1007/BF01038218
  4. Levitan B.M., Sargsyan I.S. Operatory Shturma–Liuvillya i Diraka (SturmLiouville and Dirac operators). Moscow, Nauka Publ., 1988.
  5. Marchenko V. A The periodic Korteweg-de Vries problem. Mat. Sb. (N.S.), 1974, vol. 24, pp. 319–344. http://mi.mathnet.ru/msb3757
  6. Marchenko V.A., Ostrovskii I.V. A characterization of the spectrum of Hill’s operator. Mathematics of the USSR-Sbornik, 1975, vol. 26, pp. 493–554. http://doi.org/10.1070/SM1975v026n04ABEH002493
  7. Mel’nikov V. K. A method for integrating the Korteweg-de Vries equation with a self-consistent source. Preprint no. 2-88-11/798. Dubna, Joint Institute for Nuclear Research, 1988. https://s3.cern.ch/inspire-prod-files-d/d3b9e5b61499cfe7675c6be753aeca7c
  8. Novikov S.P. The periodic problem for the Korteweg—de vries equation. Funct. Anal. Its Appl., 1974, vol 8, pp. 236–246.
  9. Stankevich I.V. A certain inverse spectral analysis problem for Hill’s equation. Doklady Akademii Nauk SSSR, 1970. Vol. 192, pp. 34–37. http://mi.mathnet.ru/dan35384
  10. Titchmarsh E.C. Eigenfunction expansions associated with second-order differential equations. Part 2. London, Oxford University Press, 1958.
  11. Urazboev G.U., Hasanov M.M. Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2022. vol. 32, pp. 228–239.
  12. Khasanov A.B., Yakhshimuratov A.B. The Korteweg–de Vries equation with a selfconsistent source in the class of periodic functions. Theoretical and Mathematical Physics, 2010, vol. 164, pp. 1008-1015. https://doi.org/10.1007/s11232-010-0081-8
  13. Chen J. Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation. International Journal of Geometric Methods in Modern Physics, 2018, vol. 15, 1850040. https://doi.org/10.1142/S0219887818500408
  14. Degasperis A., Procesi M. Asymptotic integrability. Symmetry and perturbation theory. Singapore, World Scientific, 1999, pp. 23–37.
  15. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg–de Vries equation. Physical Review Letters, 1967, vol. 19, iss. 19, pp. 1095–1097. http://doi.org/10.1103/PhysRevLett.19.1095
  16. Kuznetsova M. Necessary and sufficient conditions for the spectra of the Sturm–Liouville operators with frozen argument. Applied Mathematics Letters, 2022, vol. 131, 108035. https://doi.org/10.1016/j.aml.2022.108035
  17. Lax P. D. Periodic solutions of the KdV equation. Communications on Pure and Applied Mathematics, 1975, vol. 28, iss. 1, pp. 141–188. https://doi.org/10.1002/cpa.3160280105
  18. Lax P. D. Periodic solutions of the KdV equations. Nonlinear wave motion. Providence, AMS, 1974, pp. 85–96. https://www.ams.org/mathscinetgetitem?mr=0344645
  19. Lou S. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations. Journal of Mathematical Physics, 1994, vol. 35, pp. 2390–2396. http://doi.org/10.1063/1.530509
  20. Magnus W., Winkler W. Hill’s equation. New York, Interscience Publishers, 1966.
  21. Qiao Z., Fan E. Negative-order Korteweg–de Vries equations. Physical Review E, 2012, vol. 86, 016601. https://doi.org/10.1103/PhysRevE.86.016601
  22. Qiao Z., Li J. Negative-order KdV equation with both solitons and kink wave solutions. Europhysics Letters, 2011, vol. 94, 50003. https://doi.org/10.1209/0295-5075/94/50003
  23. Rodriguez M., Li J., Qiao Z. Negative order KdV equation with no solitary traveling waves. Mathematics, 2022. vol. 10, 48. https://doi.org/10.3390/math10010048
  24. Trubowitz E. The inverse problem for periodic potentials. Communications on Pure and Applied Mathematics, 1977, vol. 30, pp. 321–337. https://doi.org/10.1002/cpa.3160300305
  25. Verosky J.M. Negative powers of Olver recursion operators. Journal of Mathematical Physics, 1991, vol. 32, iss. 7, pp. 1733–1736. https://doi.org/10.1063/1.529234
  26. Wazwaz A.-M. Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator. Waves in Random and Complex Media, 2017, vol. 27, pp. 768–778. https://doi.org/10.1080/17455030.2017.1317115
  27. Zhang G., Qiao Z. Cuspons and smooth solitons of the Degasperis–Procesi equation under inhomogeneous boundary condition. Mathematical Physics, Analysis and Geometry, 2007, vol. 10, pp. 205–225. https://doi.org/10.1007/s11040-007-9027-2
  28. Zhao S., Sun Y. A discrete negative order potential Korteweg–de Vries equation. Zeitschrift furNaturforschung A, 2016, vol. 71, pp. 1151–1158. https://doi.org/10.1515/zna-2016-0324

Full text (russian)