«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2022. Vol 41

Feedback Minimum Principle: Variational Strengthening of the Concept of Extremality in Optimal Control

Author(s)
Vladimir A. Dykhta1

1V.M. Matrosov Institute of System Dynamics and Control Theory SB RAS, Irkutsk, Russian Federation

Abstract
Existing maximum principles of Pontryagin’s type and related optimality conditions, such as, e.g., the ones derived by F. Clarke, B. Kaskosz and S. Lojasiewicz Jr., and H.J. Sussmann, can be strengthened up to global necessary optimality conditions in the form of so-called feedback minimum principle. This is possible for both classical and non-smooth optimal control problems without terminal constraints. The formulation of the feedback minimum principle (or related extremality conditions) remains within basic constructions of the mentioned maximum principles (the Hamiltonian or Pontryagin function, the adjoint differential equation or inclusion, and its solutions –– co-trajectories). At the same time, the actual maximum condition –– maximization of the Hamiltonian –– takes a variational form: any optimal trajectory of the addressed problem should be optimal for a specific “accessory” problem of dynamic optimization. The latter is stated over all tubes of Krasovskii-Subbotin constructive motions generated by feedback strategies, which are extremal with respect to a certain supersolution of the Hamilton-Jacobi equation. Such a supersolution can be represented explicitely in terms of the co-trajectory of a reference control process and the terminal cost function. In a general version, the feedback minimum principle operates with generalized solutions of the proximal Hamilton-Jacobi inequality for weakly decreasing (𝑢-stable) functions
About the Authors
Vladimir A. Dykhta, Dr. Sci. (Phys.–Math.), Prof., V.M. Matrosov Institute of System Dynamics and Control Theory SB RAS, Irkutsk, 664046, Russian Federation, dykhta@gmail.com
For citation
Dykhta V. A. Feedback Minimum Principle: Variational Strengthening of the Concept of Extremality in Optimal Control. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 41, pp. 19–39. (in Russian) https://doi.org/10.26516/1997-7670.2022.41.19
Keywords
extremals, feedback, weakly decreasing functions
UDC
517.977.5
MSC
49K15, 49L99, 49N35
DOI
https://doi.org/10.26516/1997-7670.2022.41.19
References
  1. Gamkrelidze R.V. Principles of optimal control theory. Mathematical Concepts and Methods in Science and Engineering, vol. 7. NY, Springer, 1978, 175 p. https://doi.org/10.1007/978-1-4684-7398-8
  2. Gamkrelidze R.V. The mathematical work of L.S. Pontryagin. J. Math. Sci. (N.Y.), 2000, vol. 100, no. 5, pp. 2447–2457.
  3. Dykhta V.A. Weakly monotone solutions of the Hamilton–Jacobi inequality and optimality conditions with positional controls. Autom. Remote Control, 2014, vol. 75, no. 5, pp. 829–844. https://doi.org/10.1134/S0005117914050038
  4. Dykhta V.A. Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems. Autom. Remote Control, 2014, vol. 75, no. 11, pp. 1906–1921. https://doi.org/10.1134/S0005117914110022
  5. Dykhta V.A. Variational necessary optimality conditions with feedback descent controls for optimal control problems. Dokl. Math., 2015, vol. 91, no. 3, pp. 394–396.https://doi.org/10.1134/S106456241503031X
  6. Dykhta V.A. Variatsionnyye usloviya optimal’nosti s pozitsionnymi upravleniyami spuska, usilivayushchiye printsip maksimuma [Variational optimality conditions with feedback descent controls that strengthen the Maximum principle]. The Bulletin of Irkutsk State University. Series Mathematics, 2014, vol. 8, pp. 86–103. (in Russian)
  7. Dykhta V.A. Positional strengthenings of the maximum principle and sufficient optimality conditions. Proc. Steklov Inst. Math., 2016, vol. 293, suppl. 1, pp. 43–57.https://doi.org/10.1134/S0081543816050059
  8. Dykhta V.A., Samsonyuk O.N. Neravenstva Gamil’tona–Yakobi i variatsionnye usloviya optimal’nosti [Hamilton–Jacobi inequalities and variational optimality conditions]. Irkutsk, Irkutsk St. Univ. Publ., 2015, 150 p. (in Russian)
  9. Clarke H. Optimization and nonsmooth analysis. Philadelphia, SIAM, 1987, 320 p.
  10. Krasovskii N.N., Subbotin A.I. Pozitsionnye differentsial’nye igry [Positional differential games]. Moscow, Nauka Publ., 1974, 458 p. (in Russian)
  11. Milutin A.A. Convex-valued Lipschitzian differential inclusions and the Pontryagin Maximum Principle. J. Math. Sci. (N.Y.), 2001, vol. 104, no. 1, pp. 881–888.https://doi.org/10.1023/A:1009566921025
  12. Mordukhovich B.Sh. Optimal control of difference, differential, and differentialdifference inclusions. J. Math. Sci. (N.Y.), 2000, vol. 100, no. 6, pp. 2613–2632. https://doi.org/10.1007/BF02672708
  13. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal’nykh protsessov [The mathematical theory of optimal processes]. Moscow, St. Publ. house of Phys. and Math. Lit., 1961, 391 p. (in Russian)
  14. Artstein Z. Pontryagin maximum principle revisited with feedbacks. Eur. J. Control, 2011, vol. 17, no. 1, pp. 46–54. https://doi.org/10.3166/ejc.17.46-54
  15. Clarke P.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R. Qualitative properties of trajectories of control systems: A survey. J. Dyn. Control Syst., 1995, vol. 1, no. 1, pp. 1–48. https://doi.org/10.1007/BF02254655
  16. Dykhta V.A. On variational necessary optimality conditions with descent feedback controls strengthening Maximum principle. Differential Equations and Optimal Control. Materials of the International Conference dedicated to the centenary of the birth of Academician Evgenii Frolovich Mishchenko. Moscow, June 7–9, 2022. Steklov Mathematical Institute RAS, 2022, pp. 38–42.
  17. Frankowska H., Ka´skosz B. Linearization and boundary trajectories of nonsmooth control systems. Can. J. Math., 1988, vol. 11, no. 3, pp. 589—609. https://doi.org/10.4153/CJM-1988-025-7
  18. Ka´skosz B. Extremality, controllability, and abundant subsets of generalized control systems. J. Optim. Theory Appl., 1999, vol. 101, no. 1, pp. 73-108.https://doi.org/10.1023/A:1021719027140
  19. Ka´skosz B., Lojasiewicz S. A maximum principle for generalized control. Nonlinear Analysis: Theory, Methods and Appl., 1985, vol. 9, no. 2, pp. 109–130.https://doi.org/10.1016/0362-546X(85)90067-7
  20. Loewen P.D., Vinter R.B. Pontryagin-type necessary conditions for differential inclusion problems. Systems & Control Lett., 1997, vol. 9, no. 9, pp. 263–265. https://doi.org/10.1016/0167-6911(87)90049-1
  21. Sussmann H. A strong version of the Lojasiewicz maximum principle. In: Optimal Control of Differential Equations, ed. N.H. Pavel, Ser. Lecture Notes in Pure and Applied Mathematics, N.Y., M. Dekker Publ., 1994, pp. 1–17.
  22. Vinter R.B. Optimal Control. Birkh¨auser, Boston, 2010, 500 p. https://doi.org/10.1007/978-0-8176-8086-2

Full text (russian)