«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol 38

About Formal Normal Form of the Semi-Hyperbolic Maps Germs on the Plane

Author(s)
P. A. Shaikhullina
Abstract

There are consider the problem of constructing an analytical classification holomorphic resonance maps germs of Siegel-type in dimension 2. Namely, semi-hyperbolic maps of general form: such maps have one parabolic multiplier (equal to one), and the other hyperbolic (not equal in modulus to zero or one). In this paper, the first stage of constructing an analytical classification by the method of functional invariants is carried out: a theorem on the reducibility of a germ to its formal normal form by "semiformal" changes of coordinates is proved. The one-time shift along the saddle node vector field (the formal normal form in the problem of the analytical classification of saddle-node vector fields on a plane) is chosen as the formal normal form.

About the Authors

Polina Shaikhullina, Cand. Sci. (Phys.–Math.), Chelyabinsk State University, 129, Bratiev Kashirinykh st., Chelyabinsk, 454001, Russian Federation, tel.: (351)799-72-35, email: fominapa@gmail.com

For citation

P.A. Shaikhullina. About Formal Normal Form of the Semi-Hyperbolic Maps Germs on the Plane. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 38, pp. 54-64. (in Russian) https://doi.org/10.26516/1997-7670.2021.38.54

Keywords
semi-hyperbolic maps, formal classification, analytical classification
UDC
517.938
MSC
34M35, 34M40
DOI
https://doi.org/10.26516/1997-7670.2021.38.54
References
  1. Arnold V.I. Ordinary differential equations, Encyclopaedia Math. Sci., 1988, vol. 1, p. 1-148.
  2. Bruno A.D. Analytical form of differential equations (I). Trans. Moscow Math. Soc., 1971, vol. 25, pp. 131-288.
  3. Bruno A.D. Analytical form of differential equations (II). Trans. Moscow Math. Soc., 1972, vol. 26, pp. 199-239.
  4. Voronin S.M. Analytic classification of germs of conformal mappings (C, 0) → (C, 0) with identity linear part. Functional Analysis and Its Applications, 1981, vol. 15, no. 1, pp. 1-17. https://doi.org/10.1007/BF01082373(in Russian)
  5. Voronin S.M., Mescheryakova Yu.I. Analytic classification of germs of holomorphic vector fields with a degenerate elementary singular point. Izv. Vyssh. Uchebn. Zaved. Mat., 2001, vol. 46, no. 1, pp. 11-14. (in Russian)
  6. Il’yashenko Yu.S., Yakovenko S.Yu. Lectures of analytic differential equations. Moscow, MTCNMO Publ., 2007, 428 p. (in Russian)
  7. Shaikhullina P.A. Formal classification of the typical semi-hyperbolic maps germs. Matematicheskie zametki SVFU, 2015, vol. 22, no. 4, pp. 79-90.(in Russian)
  8. Shaikhullina P.A. Analytical classification of the simplest semi-hyperbolic maps germs. PhD thesis. Vladimir, 2020. (in Russian)
  9. Birkhoff G.D. Collected mathematical papers, vol. 1. N. Y., Amer. Math. Soc., 1950, 754 p.
  10. Ecalle J. Sur les fonctions resurgentes. Orsay, France, Universite de Paris-Sud, Departement de Mathematique, 1981.
  11. Martinet J., Ramis J.P. Probl‘eme de modules pour des ’equations diff’erentielles non lin’eaires du premier ordre. Inst. Hautes ’Etudes Sci. Publ. Math., 1982, vol. 55, pp. 63-164. https://doi.org/10.1007/BF02698695
  12. Martinet J., Ramis J.P. Classification analytique des ´equations diff´erentielles non lin´eaires resonnantes du premier ordre. Ann. Sci. ´ Ecole norm. sup´er, 1983, vol. 16, no. 4, pp. 571-621. https://doi.org/10.24033/asens.1462
  13. Tessier L. Analytical classification of singular saddle-node vector field. Jornal of Dynamical and Control Systems, 2004, vol. 10, no. 4, pp. 577-605. https://doi.org/10.1023/B:JODS.0000045365.56394.b4
  14. Ueda T. Local structure of analytic transformations of two complex variables (I) I. J. Math. Kyoto Univ., 1986, vol. 26, no. 2, pp. 233-261.
  15. Ueda T. Local structure of analytic transformations of two complex variables (II) I. J. Math. Kyoto Univ., 1991, vol. 31, no. 3, pp. 695-711.

Full text (russian)