«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol. 37

Integration of the Matrix Nonlinear Schr¨odinger Equation with a Source

Author(s)
G.U.Urazboev, A.A Reyimberganov, A.K. Babadjanova
Abstract

This paper is concerned with studying the matrix nonlinear Schr¨odinger equation with a self-consistent source. The source consists of the combination of the eigenfunctions of the corresponding spectral problem for the matrix Zakharov-Shabat system which has not spectral singularities. The theorem about the evolution of the scattering data of a non-self-adjoint matrix Zakharov-Shabat system which potential is a solution of the matrix nonlinear Schr¨odinger equation with the self-consistent source is proved. The obtained results allow us to solve the Cauchy problem for the matrix nonlinear Schr¨odinger equation with a self-consistent source in the class of the rapidly decreasing functions via the inverse scattering method. A one-to-one correspondence between the potential of the matrix Zakharov-Shabat system and scattering data provide the uniqueness of the solution of the considering problem. A step-by-step algorithm for finding a solution to the problem under consideration is presented.

About the Authors

Gayrat Urazboev, Dr. Sci. (Phys.–Math.), Assoc. Prof., Urgench State University, 14, Khamid Alimdjan str., Urgench, 220100, Uzbekistan, phone: (99 891) 428-15-71, email: gayrat71@mail.ru

Anvar Reyimberganov, PhD (Phys.–Math.), Assoc. Prof., Urgench State University, 14, Khamid Alimdjan str., Urgench, 220100, Uzbekistan, phone: 9(9862) 224-67-00, email: anvar@urdu.uz

Aygul Babadjanova, PhD (Phys.–Math.), Senior Researcher, Khorezm branch of Uzbekistan Academy of Sciences V. I. Romanovskiy Institute of Mathematics, 14, Khamid Alimdjan str., Urgench, 220100, Uzbekistan, phone:(99897) 511-64-40, email: oygul@bk.ru

For citation

Urazboev G.U., Reyimberganov A.A., Babadjanova A.K. Integration of the Matrix Nonlinear Schr¨odinger Equation with a Source. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 37, pp. 63-76. https://doi.org/10.26516/1997-7670.2021.37.63

Keywords
matrix nonlinear Schr¨odinger equation, self-consistent source, inverse scattering method, scattering data.
UDC
517.957
MSC
34L25, 35Q41, 35R30, 34M46
DOI
https://doi.org/10.26516/1997-7670.2021.37.63
References
  1. Bondarenko N. Inverse scattering on the line for the matrix Sturm-Liouville equation. J. Differential Equations, 2017, vol. 262, iss. 3, pp. 2073-2105. https://doi.org/10.1016/j.jde.2016.10.040
  2. Bondarenko N., Freiling G., Urazboev G. Integration of the matrix KdV equation with self-consistent source. J. Chaos, Solitons & Fractals, 2013, vol. 49, pp. 21-27. https://doi.org/10.1016/j.chaos.2013.02.010
  3. Demontis F., van der Mee C. Characterization of Scattering Data for the AKNS System. Acta Applicandae Mathematicae, 2014, vol. 131, pp. 29-47. https://doi.org/10.1007/s10440-013-9848-x
  4. Demontis F., van der Mee C. Novel formulation of inverse scattering and characterization of scattering data. Discrete and Continuous Dynamical Systems, 2011, pp. 343-350. https://doi.org/10.3934/proc.2011.2011.343
  5. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for Solving the Korteweg-deVries Equation. Physical Review Letters, 1967, vol. 19(19), pp. 1095-1097. https://doi.org/10.1103/PhysRevLett.19.1095
  6. Faddeev L.D., Takhtajan L.A. Hamiltonian Methods in the Theory of Solitons. Berlin, Springer-Verlag, 1987, 592 p. https://doi.org/10.1007/978-3-540-69969-9
  7. Khasanov A.B., Ibragimov A.M. On the inverse problem for the Dirac operator with periodic potential. Uzbek Mat. Zh., 2001, no. 3-4, pp. 48-55.
  8. Khasanov A.B., Reyimberganov A.A. About the finite density solution of the higher nonlinear Schrodinger equation with self-consistent source. Ufimsk. Mat. Zh., 2009, vol. 1, iss. 4, pp. 133-143.
  9. Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Communications on Pure and Applied Mathematics, 1968, vol. 21, no. 5, pp. 467-490. https://doi.org/10.1002/cpa.3160210503
  10. Mel’nikov V.K. Integration of the nonlinear Schroedinger equation with a selfconsistent source. Communications in Mathematical Physics, 1991, vol. 137, no. 2, pp. 359–381. https://doi.org/10.1007/bf02431884
  11. Reyimberganov A.A., Rakhimov I.D. The Soliton Solutions for the Nonlinear Schrodinger Equation with Self-consistent Sources. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 35, pp. 84-94. https://doi.org/10.26516/1997-7670.2021.36.84
  12. Urazboev G.U., Xoitmetov U.A., Babadjanova A.K. Integration of the Matrix Modified Korteweg-de Vries Equation with an Integral-Type Source. Theor. Math. Phys., 2020, 203, pp. 734-746. https://doi.org/10.1134/S0040577920060033
  13. Yakhshimuratov A. The Nonlinear Schrodinger Equation with a Self-consistent Source in the Class of Periodic Functions. Mathematical Physics, Analysis and Geometry, 2011, vol. 14, no. 2, pp. 153–169. https://doi.org/10.1007/s11040-011-9091-5
  14. Zakharov V.E., Shabat A.B. Exact theory of two-dimensional self-focusing and onedimensional self-modulation on waves in nonlinear media. Soviet Physics JETP, 1972, vol. 34, pp. 62-69.

Full text (english)