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Abstract. This paper is concerned with studying the matrix nonlinear Schrédinger
equation with a self-consistent source. The source consists of the combination of the
eigenfunctions of the corresponding spectral problem for the matrix Zakharov-Shabat
system which has not spectral singularities. The theorem about the evolution of the
scattering data of a non-self-adjoint matrix Zakharov-Shabat system which potential is
a solution of the matrix nonlinear Schrédinger equation with the self-consistent source
is proved. The obtained results allow us to solve the Cauchy problem for the matrix
nonlinear Schrédinger equation with a self-consistent source in the class of the rapidly
decreasing functions via the inverse scattering method. A one-to-one correspondence
between the potential of the matrix Zakharov-Shabat system and scattering data provide
the uniqueness of the solution of the considering problem. A step-by-step algorithm for
finding a solution to the problem under consideration is presented.

Keywords: matrix nonlinear Schrodinger equation, self-consistent source, inverse scat-
tering method, scattering data.

1. Introduction

The inverse scattering transform method was first proposed by Gardner,
Greene, Kruskal and Miura (GGKM) [5] in 1967 for solving the Cauchy
problem for the Korteweg-de Vries (KdV) equation. Their approach was
based on the connection between the KdV equation and the spectral theory
for the Sturm-Liouville operator on the line. Shortly thereafter, P. Lax [9]



64 G.U.URAZBOEV, A. A. REYIMBERGANOV, A. K. BABADJANOVA

pointed out the general character of the inverse scattering method. A few
years later, V.E. Zakharov and A.B. Shabat [14] managed to solve another
important nonlinear evolution equation, the so-called nonlinear Schrodinger
(NLS) equation, using a nontrivial extension of the methods used in [5;9].

The inverse scattering problem for the Dirac operator on the entire line
was studied by V.E. Zakharov, A.B. Shabat [14], L.A. Takhtadzhyan, L.D.
Faddeev [6], A.B. Khasanov [7] and others. The work relevant to the ne-
cessity and sufficient conditions for the solvability of the inverse scattering
problem for the matrix Sturm-Liouville operator on the axis was studied
in [1]. In the matrix case, the inverse scattering theory for the matrix
Zakharov-Shabat system [3] was investigated by F. Demontis and C. Van
der Mee and applied for the integration of the matrix NLS equation [4].

The NLS equation with the self-consistent sources in various classes of
functions were considered by V.K. Melnikov [10], A.B. Khasanov, A.A.
Reyimberganov [8], I.D. Rakhimov [11], A.B. Yakhshimuratov [13]. In this
work, we consider the matrix NLS equation with the self-consistent source
in the class of rapidly decreasing matrix functions. Other matrix nonlinear
evolution equations with the self-consistent sources were integrated via the
inverse scattering method in the works [2;12].

2. Scattering theory for the matrix Zakharov-Shabat system

In this section, we give well-known [3], necessary information concerning
the theory of direct and inverse scattering problems for the operator

d
L=—iJ2 vy
i T (x)

on the line (—oco < x < 00) with the rapidly decreasing potential by x.
We consider the following matrix Zakharov-Shabat system

—iJX = VX = \X, (2.1)

where X (A, z) is 2m x m matrix function,

7= Lo ] v =Lt

and U(z) is an m x m matrix valued function, U*(x) denotes the complex
conjugate of U(x), I, and 0,, are the identity and zero matrices of order
m, respectively.

We assume that the function U(x) satisfies the following condition

Hy / |U()] dz < oo,
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where [|U(2)] = max 3 iy [Uji(2)]-

For A € R the Jost matrices F'(\,x) and G(A, z) as the 2m x 2m matrix
solutions of (2.1) satisfy the following asymptotic conditions:

F(\z) = [\ z) v\, 2)] = ML, o — oo,

GOnz) = [60\ 2) 60\ )] = €Nl wo—00. 22

Here (A, z), ¥(A, x), (X, z) and ¢(\, z) are the submatrices with 2m rows
and m columns, which are usually called Jost solutions. Here and below
bar does not mean complex conjugation.

The Jost solutions (A, x) and (), z) of the equation (2.1) at any
A € R can be represented in the following form

BOa) = e | | [ R

bOva) = e |9 | [ MR gy

where
[Ra) Kio)] = [ J00) tn)

Ks(z,y), s =1,4 are m x m matrices. Here the kernels have relations with
the potential
U(z) = 2iKs(x,z) = 2iK3(x, x).

We also consider the following auxiliary equation
iY'J YV =puY, (2.4)
where Y is an m X 2m matrix function.

Lemma 1. Let X(\, x) and Y (u, x) be solutions of the equations (2.1) and
(2.4), respectively, then the following relation holds

iA = Y (p,2)X (N 2) = (YJX)'. (2.5)

For A € R there exists 2m x 2m matrix A(\) such that
G\, 2) = F(\, 2) AN,
F(\z) =G\ z)C(N).

Here A(\) and C'(X) consist of block matrices such as

(A0 A0
AR = <A§,<A> 4400 ) ’
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As(N), s = 1,4 are m x m matrices.

Assuming that the potential U(x) have entries in H1, we can say that
for each fixed # € R the matrix functions ¥(\,z)e™™% and @(\, x)e*
(Y (A, 2)e® and ¢(\, x)e”**) can be continued to the half-plane ImA > 0
(ImX < 0) and for all ImA > 0 (Im\ < 0) the matrix functions ¢(\, x)e ="
and ¢(\, 2)e™ (P(\, 2)e™ and (A, 2)e~**) are bounded. Invertible mat-
rix function Aj(A) (A4(\)) can be analytically continued to the half-plane
ImA >0 (ImA < 0) and there the equation det A;(A) = 0 (det A4(\) = 0)
has a finite number of zeros A;, j = 1, N (\;, j = 1, N) which correspond
to the eigenvalues of the operator L.

Definition 1. The real zeros of the equation det A1 (\) = 0 (det A4(\) =0)
will be called the spectral singularities of the equation (2.1).

Remark 1. If [*_||U(x)||dz < 5 then there do not exist neither spectral
singularities of the operator L [23].

We assume that the operator L has no spectral singularities and all the
eigenvalues of the operator L are simple.

The matrix functions (A;(\))~! and (A4()\))~! have simple poles on the
points A\j, j = 1, N in ImA > 0 and 5\]’, j=1,N in ImA < 0, respectively.
Let N; = /@e/\i(Al()\))_l, j=1,Nand N; = /{ie;\g(A4(A))_1, j =1,N, then

-7

there are matrices IZ; and Rj such that

(2.7)
(Z)()\j, x)Nj = ’(/J()\j, x)Rj, ] = 1, N.
Definition 2. The following matrices for A € R
R(N) = C(NC(A) = —Ap (M) A2(N),
) (2.8)
R(N) = Cs(NCH(N) = —A (V) As(N)
are called reflection coefficients.
As V*(z) = =V (z), we have
O (nx) =oAL x), @ (A 3) =01 6N, z), (2.9)
where 01 = B]m ém ), A* is the complex conjugation of A. Then, from

it yields that,

and

R(\) = —R*(\).
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Definition 3. The set {R()\), A1, A2, ..., AN, R1, Ra, ..., RN } is called the

scattering data associated with the equation (2.1).

The direct scattering problem is to find the scattering data via the given
potential U(x) of the equation (2.1) and inverse scattering problem is to
find the potential U(x) of the equation (2.1) via the given scattering data.

The kernels of the representation (2.3) satisfy the following Gelfand-
Levitan-Marchenko integral equations for « > y

K(z,y) + (}m Qz+y) + [2° K(z,2)Qz + y)dz = 0,
I,

K(x,y)+ 0,

Qz+y)+ [ K(z,2)Qz +y)dz =0,

where

1 [ , N :
Q) = o /_ . R(\)e®d\ + Z R;ei®,
j=1
Qx) = —Q*(z).
Here, p(z) = 5 [2. R(\)e**d\ and Ce *4B = Z;VZI Rjei®.
In the work [3], it was proven the uniquely determining of the potential
U(z) by the scattering data.

3. Integration of the matrix NLS equation with a self-consistent
source

We consider the integration of the following problem

N
iU + 200U 4 Upg =2 (91,005, + 5, P1.n), (3.1)

n=1
—iJ®! —V®, =\, P, n=1,2 ... N, (3.2)

under the initial condition

Uli=o = Up(z). (3.3)
Here ®;, = ®,,(z,t), j = 1,2 are m x m matrix functions, columns
of &, = g;:z ) matrices are linearly independent eigenfunctions corre-

sponding to the eigenvalue \,, n = 1, N and normalized by the following
conditions

/ O (2,1)®p (2, t)dr = a2 (t) Iy, n=1,2,...,N. (3.4)

—00
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where &, n = 1, N satisfy the equation (2.4), I, is the m x m identity
matrix (note that @ (x,t)®,(x,t) are normal matrices).
Here U = U(x,t) is an m x m matrix function,

B 0 iU(z,t)
Viz,t) = [iU*(m,t) 0

is 2m X 2m matrix, a% (t), n =1, N are nonzero continuous scalar functions.
The matrix function Uy(z) satisfies the following properties:

y
/ |Uo(2)|| dz: < oo (3.5)

2) Operator L(0) = —iJ% — Vo(x) possesses exactly 2N eigenvalues
A1(0), A2(0), ..., Aan(0), every eigenvalue has m linearly independent
corresponding eigenfunctions and linearly independent eigenfunctions
corresponding to these eigenvalues don’t have associated vector func-
tions.

Our main purpose is to obtain the time evolution equations of the scat-
tering data for finding the solution of the problem (3.1)-(3.5) which is a
collection

{U(.’E, t), (131()\1, Z, t), ‘I)Q()\Q, x, t), ceey (I)N()\Na xT, t) }
under assumption of existence in the following sense:

1) for all ¢ > 0,

dx < oo (3.6)

i/i o)

2) the columns of the ®,(x,t), n = 1,2N matrices belong to the domain
of L?(R,C?™), which is the space of complex-valued vector functions
of size 2m with components belonging to L?(R).

In the current section we will derive the representations for the evolu-
tion equations of the scattering data with which it is available to find the
collection of solution of the problem (3.1)-(3.5) in the class of the rapidly
decreasing functions (3.6) via the inverse scattering method for the operator
L(t) = —iJ & —V(z,1).

Under the assumption A\ppny = A5, n = 1,N and DN = — ’ﬁ’n,
Py nyn = P, the equation (3.1) can be represented as a Lax operator

equality:
2N

Li+[B, LI+ ) [J,2,®}] =0, (3.7)

n=1
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where [B, L] = BL — LB and
UU* +2il, L, iU, +2iU L
B= . (3.8)
iUz + 20" L —UU* - 2il, L,

Here, both sides of the equality (3.7) turn out to be operators of multipli-
cation by a matrix function.

Lemma 2. Let Fy(\, x,t) be any 2m x 2m matriz solution of the equation
LFy=A\Fp, \eR (3.9)

and let F,,, n=1,2,...,2N be any matrix functions m x 2m, which satisfy

OF, s
8; =i® Fy,n=1,2,....2N. (3.10)
Then, the matriz function
2N
Hy=Fy+BFy— Y ®,F, (3.11)
n=1

is also a matriz solution of equation (3.9).

Proof. We take the derivative from equation (3.9) with respect to ¢
LFy + LF, = \Fy,.

Here, we will find LF,

2N

LFy = AFy — LFy = Ay + BLFy — LBFy + Y _ [J, 2,9} Fo.
n=1
Using this equality now we calculate LHy
2N 2N
LHy=XHo+ Y (A= X)) @uFy — Y 8,5 JFp

n=1 n=1
2N 2N

=AHy+ Y Py <(/\ ) Fn = > cI>;;JF0>
n=1 n=1
2N

=AHy+ Y nH,.
n=1

Here, we introduce H,,, n =1,2,...,2N

Hyp=(\—A)Fp — ®%JFy,n=1,2,...,2N. (3.12)
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According to the lemma 1, we can show that

OH,
= 1
o =0 (3.13)

and ||Hp| — 0 as x — £oo. Hence, it follows that H,, = 0 for all A € R.
This means that the matrix function Hy for any A satisfies the equation
(3.9). The proof of lemma is complete. O]

Let us take F'(\,z,t) and G(A, z,t) Jost matrices as the solution Fy of
the equation (3.9) and let for n = 1,2, ..., 2N hold the following expressions
E,m =i [* 0 (x, t)G(\, 2, t)dx

(3.14)
Fyt = —i [°®) (x,t)F(\, z, t)dx .

Here ®,,(z,t) belong to the L2(R, C*™), Jost matrices F and G are bounded

for ImA = 0. Using lemma 1, we can show that these integrals are
convergent:
x P+ ; ) .
if @GO e = n@aﬂi = ),
- o (2, t) JF(\, 2, t
~i [ @ nF O, e = mai i o )

Moreover, Fif € Lo(R,C?™).

Substituting (2.2), (3.14) into the expressions (3.11) and (3.12), we
define Hy, Hy, H, , H;f. According to (3.13), it is easy to show for
n=1,2,..,2N that H, = H; = 0. Therefore, we can conclude that the
matrix functions

Hf =F+BF -YN @,F},

(3.15)
Hy =G+ BG -2 &,F;

are solutions of the equation (3.9).

Remark 2. Using the asymptotics (2.2) for the Jost solutions in (3.15)
we obtain

AT
+ 912 e Im Om
Hy™ — —2i) ( 0, e J,  x— oo,
iAT
_ 512 e’ Im Om _
Hy™ — —2i) < 0, e‘i)‘f”Im)J’ T — —o0.

By the uniqueness of the Jost solutions we get
Hi = -2iN*FJ, Hy = —2i\*GJ. (3.16)
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Lemma 3. For all A € R the following equality holds
R(\) = 4iA’R(N). (3.17)
Here the dot means the derivative respect to the parameter t.
Proof. We introduce the following matrix function
H=H, — Hf A(\). (3.18)
Substituting (3.16) into the expression (3.18), we receive
H = —2iNFAN)J + 2N FJAN) = 2i\2F [J, A(\)]. (3.19)

Using the representations (3.15) and the expression (3.18), we have

2N
H=FA\) = ®u(F, — FTA(\).
n=1
Here,
+oo
F, —FEFA() = z/ O Gdz.

Using lemma 1 and since, ®,(x,t) belong to the L*(R,C*™), Jost matrix
G is bounded for ImA = 0, we find that

oo orJG |7
o =" =0.
So, we get .
H=FA(\). (3.20)
Comparing (3.19) and (3.20) we find
2N [J,AN)] = A(N). (3.21)
Particularly, _ '
AN =0,  Ay(\) = 4iNZAx(N), (3.22)
As(\) = —4iX2A3()\), A0\ =0. (3.23)

According to R(\) = —A7 (\)Az(N), we can find
A1 NR(N) = —Ax(N).
Taking the derivative by ¢ from the last equality, we obtain

ATV R(N) = —4iX2A5(N)

and we find that R(\) = —4iA2 A7 (\)Aa()\), which is (3.17). The proof of
lemma is complete. ]
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Corollary 1. Since, A1(\) does not depend on t, its determinant det A1 ()
and its zeros A\j, j =1, 2, ..., N also do not depend on t.

Lemma 4. The matriz functions R;(t), j = 1, 2, .., N satisfy the
following equations

dR;(t) .

# = (4iX} — a3 (1) R;(¢). (3.24)

Proof. For ImA; >0, j =1, 2, ..., N we denote
h(;()‘]ﬁxvt) = (E(Aj7x7t) + B(Z;()‘]ﬁwvt) - 2121];{1 (I)n(l',t)f;(/\j,x,t),

(3.25)
where the vector functions f, (\j, z,t), fii(\j,x,t) are defined as follows
(3.26)

i\, z,t) = —Zf+oo Ok (2, ) (\j, z, t)d .

Here, the functions under the integrals belong to the class L%*(R,C?™),
which provide the convergence of the integrals.
We now introduce the following matrix functions

hj = hy (\j,z,t)Nj — ihg (A\j, 2, ) R;(t), j=1,2,...,N. (3.27)
Using the expressions (3.25) we can rewrite (3.27) as

h; = gb()\],:n t)N; + Bo(N\j, x, t)N; zd)()\j,z: R (t)+

—iByY(\j, x, t)R Z(I) YR;(t), 7=1,2,.,N. (3.28)

Differentiating (2.7) Wlth respect to ¢t and taking account of the indepen-
dence of N; from t we obtain

Qb()\j,l‘ t) —’L?l)()\],ﬂf t)R ( )+“1Z_)(>‘ja$7t)R](t)’ ]: 1a2a"'7N'
(3.29)
Substituting (3.26) and (3.29) into (3.28) we get for j =1,2,..., N

=ip(\j, z, t)R +ZZ<1> :ct/ OF (z,t)h(\j, z,t)dzR;(t).

(3.30)
If n # j, according to lemma 1 we get

/ @;(x,t)iﬁ()\w x,t)dz = 0.
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In the case of n = j, we receive for j =1,2,...,. N

= ip(\j, , t) R;(t) +i®;(x, t) /OO % (z, t)p(Nj, z, t)dzR;(t).  (3.31)

—00

We know that
q)j(x7 t) = 1;(/\% €L, t)cj(t)7 J=1N. (332)

Here ¢;(t), j = 1,N are m x m matrices as supposing that a;(t) # 0,
j = 1,N. Moreover, the columns of the matrix ¢ (\;,z,t)R;(t) are also
eigenfunctions, therefore, R;(t) matrix can be represented as linear combi-
nations of columns of ¢;(t), i.e., exist m xm matrices e;(t) that the following
equality holds

R;j(t) = c;(t)e;(t),j =1,N.

Using this representation and the relation (3.32) in the second term of
the expression (3.31) we have

i, (2, 1) / 8@, )0\ 2, 0)da Ry (1)

—0o0

= ip(N\j,x, t)c;(t) /Oo i (2, 1)®j(z, t)dve;(t) =

—0o0

= i (Aj, 2, t)ej (8)al () Ime; (8) = das () (N, 2, 1) R; (1),
Hence, we get
hj = (N, z, t)R;(t) + id(\j, z,t)a () R;(t), j=1,2,..,N. (3.33)
According to (3.15) we get
hy = —4AXN0(Nj, 2, t) R;(t). (3.34)

By comparing (3.33) and (3.34) it yields that R;(t), j = 1, N satisfy
the equation (3.24) for ImX; > 0, j = 1,2,..., N. The proof of lemma
is complete. ]

Thus, we have proved the following theorem.
Theorem 1. If the collection {U(w,t), Oi(Nj,x,t),5 =1, N} is a solution
of the problem (3.1)-(3.6), then the scattering data for the operator

o d
L(t) = —ZJ% —V(z,t),

satisfy the following relations
R(\) = 4iA>R(\), X € R,
d\; dR;(t)

_ ) a2 2 L
w0 7—(42)\]‘—%(15))1%3'(75)’ Jj=1N.
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Using the following algorithm we can find the solution. Let us given the
functions Up(z) and a2 (t), n =1, N.

— Solving the direct scattering problem for the initial matrix Uy(x), ob-
tain the scattering data {R(\), A1, Ao, ..., An, R1, R, ..., Ry} of the
operator L(0) = —z'J% — V(z).

— Using the results of the Theorem 1, find the scattering data for ¢ > 0
{R()\,t), A1(t), /\Q(t), ey AN(1), Rl(t) ,Rg(t), ...,RN(t)}.

— Using the method based on the Gelfand-Levitan-Marchenko integral
equation, solve the inverse scattering problem, i.e. from the scatter-
ing data {R()\,t), Al(t), Az(t), veey )\QN(t), Rl(t) ,Rg(t), ...,RN(t)} de-
termine U(x,t).

— Find the Jost solutions of the operator L(t) with the potential U(z,t)
and then using (2.3), construct the matrix ®,,(x,t).

4. Conclusion

In this work, we have deduced the evolution of the scattering data of
a non-self-adjoint matrix Zakharov-Shabat system. The obtained results
completely specify the time evolution of the scattering data for L(t¢) and
satisfy the condition of the one-to-one correspondence between the potential
of the matrix Zakharov-Shabat system and scattering data. This allows to
find solution of the problem (3.1)-(3.6) in the class of the rapidly decreasing
functions via the inverse scattering method.
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NBaTerpupoBaiue MaTpuvHOTr0O HEJIMHENHOTO ypaBHEHUS
HIpeanarepa ¢ nCTOYHUKOM

I V. Vpas6oes', A. A. Peiimvu6epranos!, A. K. Ba6amxanosa’

L Vpeenuckuti 2ocydapemeenmoidi yHusepcumem, Ypeenu, Yabexucman

2 Huemumym mamemamury um. B. H. Pomanosckozo AH PY3, Ypeenu, Yabe-
KUCMaH

Awnnoranusi.  Pabota mocBsiiieHa UCCIEJOBAHUIO MATPUIHOTO HEJIMHEHHOTO ypaB-
venns [llpenunarepa ¢ caMOCOIVIACOBAHHBIM HMCTOYHHUKOM, COCTOSIIIMM W3 KOMOMHAIMit
COOCTBEHHBIX (DYHKITUI COOTBETCTBYIOIIEI CIIEKTPAIHHOM 3a1a9H /I MATPUIHON CHCTe-
Mbl 3axapoBa — [[labara u He nMeIOIIEei CrieKTpabHbIX ocobenHocTeil. Jlokazana Teopema
00 9BOJTIONNN JAHHBIX PACCESHUST HECAMOCOIPSIKEHHOW MATPUIHON CHCTEMBI 3aXapoBa —
IITabaTa, moTeHIMAT KOTOPOil SIBJISIETCS PEIIEHNEM MATPUYHOTO HEJIUHEHHOTO yPABHEHUST
Ipenuarepa ¢ camocoryiacOBaHHBIM UCTOIHUKOM. [losydeHHbIE PE3yIbTATHI TO3BOJISIIOT
pemuth 3agauy Kommm st MarpuyHOoro HesuHeiiHOTO ypasHenusi [lpenuarepa ¢ camo-
COIJIACOBAHHBIM UCTOYHUKOM B KJIACCe OBICTPOYOBIBAIOIMINX (DYHKIIMHA METOIOM OOpATHOM
3agaun 1.1 — cOOTBETCTBUE MKy MOTEHITUAJIOM MATPUUIHON cuctembl 3axaposa — [1la-
06aTa ¥ JTaHHBIMU PacCesHusi 00eCIednBaeT OMHO3HAYHOCTD PEIIEHUsI PACCMATPUBAEMOI
3agaqn. [IpuBeieH mOMAroBelif aJIrOPUTM TIOUCKA PEIEHUs] PACCMATPUBAEMON 38, 1adH.

KurogyeBbie ciioBa: MmarpuvHoe HestmHelHoe ypaBHenus [1lpegunrepa, meros obpar-
HOIT 3a/1a49M pacCesiHus, CAMOCOTJIACOBAHHBIN MCTOYHUK, JTAHHBIX PACCESTHUSI.
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