«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol. 36

On the Solvability of a Class of Nonlinear Urysohn Integral Equations on the Positive Half-line

Author(s)
Kh.A. Khachatryan, H.S.Petrosyan
Abstract

The paper investigates the Urysohn’s nonlinear integral equation on the positive half-line. Some special cases of this equation have specific applications in different areas of modern natural science. In particular, such equations arise in the kinetic theory of gases, in the theory of 𝑝-adic open-closed strings, in mathematical theory of the spatiotemporal spread of the epidemic, and in theory of radiative transfer in spectral lines. The existence theorem for nonnegative nontrivial and bounded solutions is proved. Some qualitative properties of the constructed solution are studied. Specific applied examples of the Urysohn’s kernel satisfying all the conditions of the approved theorem are provided.

About the Authors

Khachatur Khachatryan, Dr. Sci. (Phys.–Math.), Prof., Lomonosov Moscow State University, 1, Leninskiye Gory, GSP-1, Moscow, 119991, Russian Federation; Institute of Mathematics of NAS of Armenia, 24/5, Marshal Baghramyan pr., Yerevan, 0019, Republic of Armenia; Yerevan State University, 1, Alex Manoogian ul., Yerevan, 0025, Republic of Armenia, tel.: (+374)913-002-51, email: khachatur.khachatryan@ysu.am

Haykanush Petrosyan, Cand. Sci. (Phys.–Math.), Assoc. Prof., Lomonosov Moscow State University, 1, Leninskiye Gory, GSP-1, Moscow, 119991, Russian Federation; Armenian National Agrarian University, 74, ul. Teryana, Yerevan, 0009, Republic of Armenia, tel.: (+374)550-220-07, email: Haykuhi25@mail.ru

For citation

Khachatryan Kh.A., Petrosyan H.S. On the Solvability of a Class of Nonlinear Urysohn Integral Equations on the Positive Half-line. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 36, pp. 57-68. https://doi.org/10.26516/1997-7670.2021.36.57

Keywords
Urysohn equation, monotonicity, Caratheodory condition, iterations, bounded solution.
UDC
517.968.4
MSC
45G05
DOI
https://doi.org/10.26516/1997-7670.2021.36.57
References
  1. Arabadzhyan L.G., Engibaryan N.B. Convolution equations and nonlinear functional equations. J. Soviet Math., 1987, vol. 36, no. 6, pp. 745-791. https://doi.org/10.1007/BF01085507
  2. Cercignani C. The Boltzmann equation and its applications. Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, 455 p.
  3. Diekmann O. Thresholds and travelling waves for the geographical spread of infection. J.Math. Biology., 1978, vol. 6, no. 2, pp. 109-130. https://doi.org/10.1007/BF02450783
  4. Diekmann O., Kaper. H.G. On the bounded solutions of a nonlinear convolution equation. Nonlinear Analysis, Theory Math., Appl., 1978, vol. 2, no. 6, pp. 721-737. https://doi.org/10.1016/0362-546X(78)90015-9
  5. Engibaryan N.B. On a problem in nonlinear radiative transfer. Astrophysics, 1966, vol. 2, no. 2. pp. 12-14.https://doi.org/10.1007/BF01014505
  6. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Moscow, Nauka Publ., 1981. 544p. (in Russian)
  7. Krasnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevsky P.E. Integral operators in Space of summerable functions. Moscow, Nauka Publ., 1966, 500 p. (in Russian)
  8. Khachatryan A.Kh., Khachatryan Kh.A. A one parameter family of positive solutions of the nonlinear stationary Boltzmann equation (in the framework of a modified model).Russian Mathematical Surveys, 2017, vol. 72, no. 3, pp. 571-573. https://doi.org/10.1070/RM9775
  9. Khachatryan A.Kh., Khachatryan Kh.A. On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread. Proceedings of the Steklov Institute of Mathematics, 2019, vol. 306, pp. 271–287. https://doi.org/10.1134/S0081543819050225
  10. Khachatryan Kh.A. Solvability of Some Classes of Nonlinear Singular Boundary Value Problems in the Theory of p-Adic Open-Closed Strings. Theoretical and Mathematical Physics, 2019, vol.200, no. 1, pp. 1015–1025. https://doi.org/10.1134/S0040577919070067
  11. Khachatryan Kh.A. Sufficient conditions for the solvability of the Urysohn integral equation on a half-line Doklady Mathematics, 2009, vol. 79, no. 2, pp. 246-249. https://doi.org/10.1134/S1064562409020264
  12. Khachatryan A.Kh., Khachatryan Kh.A. On the construction of a nonnegative solution for one class of Urysohn-type nonlinear integral equations on a semiaxis. Ukrainian Mathematical Journal, 2011, vol.63, no. 1, pp. 134-145. https://doi.org/10.1007/s11253-011-0492-1
  13. Khachatryan Kh.A. On a class of integral equations of Urysohn type with strong non-linearity. Izv. Math., 2012, vol. 76, no. 1, pp. 163-189. http://dx.doi.org/10.1070/IM2012v076n01ABEH002579
  14. Khachatryan Kh.A., Petrosyan H.S. On a Class of Integral Equations with Convex Nonlinearity on Semiaxis. Journal of Contemporary Mathematical Analysis, 2020, vol. 55, no. 1, pp. 42-53. https://doi.org/10.3103/S1068362320010057
  15. Sergeev A.G., Khachatryan Kh.A. On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic. Transactions of the Moscow Mathematical Society, 2019, vol. 80, no 1, pp. 95-111. https://doi.org/10.1090/mosc/286
  16. Vladimirov V.S., Volovich Ya.I. Nonlinear Dynamics Equation in p-Adic String Theory. Theoret. and Math. Phys., 2004, vol. 138, no. 3, pp. 297-309. https://doi.org/10.1023/B:TAMP.0000018447.02723.29

Full text (english)