«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol. 36

Non-local Problems with Integral Displacement for Highorder Parabolic Equations

Author(s)
A.I. Kozhanov, A.V. Dyuzheva
Abstract

The aim of this paper is to study the solvability of solutions of non-local problems with integral conditions in spatial variables for high-order linear parabolic equations in the classes of regular solutions (which have all the squared derivatives generalized by S. L. Sobolev that are included in the corresponding equation) . Previously, similar problems were studied for high-order parabolic equations, either in the one-dimensional case, or when certain conditions of smallness on the coefficients are met equations. In this paper, we present new results on the solvability of non-local problems with integral spatial variables for high-order parabolic equations a) in the multidimensional case with respect to spatial variables; b) in the absence of smallness conditions. The research method is based on the transition from a problem with non-local integral conditions to a problem with classical homogeneous conditions of the first or second kind on the side boundary for a loaded integro-differential equation. At the end of the paper, some generalizations of the obtained results will be described.

About the Authors

Alexander Kozhanov, Dr. Sci. (Phys.–Math.), Prof., S. L. Sobolev Institute of Mathematics SB RAS, 4 Koptyuga Ave., Novosibirsk, 630090, Russian Federation, Samara State Technical University, 244 Molodogvardeyskaya Str., Samara, 443100, Russian Federation, tel.: (383)333-28-92, email: kozhanov@math.nsc.ru

Alexandra Dyuzheva, Cand. Sci. (Phys.–Math.), Assoc. Prof., Samara State Technical University, 244 Molodogvardeyskaya Str., Samara, 443100, Russian Federation, tel.: (846)278-43-53, email: aduzheva@rambler.ru

For citation

Kozhanov A.I., Dyuzheva A.V. Non-local Problems with Integral Displacement for High-order Parabolic Equations. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 36, pp. 14-28. (in Russian) https://doi.org/10.26516/1997-7670.2021.36.14

Keywords

high-order parabolic equations, non-local problems, integral boundary conditions, regular solutions, uniqueness, existence.

UDC
518.517
MSC
35K30,35R99
DOI
https://doi.org/10.26516/1997-7670.2021.36.14
References
  1. Abdrakhmanov A.M., Kozhanov A.I. A problem with a non-local boundary condition for a class of odd-order equations. Russian Mathematics, 2007, vol. 51, no. 5, pp. 1-10. https://doi.org/10.3103/S1066369X07050015
  2. Abdrakhmanov А.М. Solvability of a boundary-value problem with an integral boundary condition of the second kind for equations of odd order. Mathematical Notes, 2010, vol. 88, no. 2, pp. 163-172. https://doi.org/10.1134/S000143461007014X
  3. Abdrakhmanov A.M., Kozhanov A.I. O razreshimosti nachal’no-kraevyh zadach s granichnym usloviem integralnogo vida dlya nekotoryh neklassicheskih differencialnyh uravnenij [On the solvability of initial boundary value problems with an integral boundary condition for some non-classical differential equations]. Matematicheskie zametki SVFU [NEFU Mathematical Notes], 2013, vol. 20, no. 2, pp. 3-14.
  4. Genaliev M.T. On the theory of boundary value problems for loaded differential equations. Almaty: Institute of Theoretical and Applied Mathematics, 1995. 269 p.
  5. Kozhanov A.I., Pulkina L.S. Kraevye zadachi s integral’nym granichnym usloviem dlya mnogomernyh giperbolicheskih uravnenij [Boundary value problems with an integral boundary condition for multidimensional hyperbolic equations]. Dokl. RAS [RAS reports], 2005, vol. 404, no. 5, pp. 589-592.
  6. Kozhanov A.I., Pul’kina L.S. On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations. Differential Equations, 2006, vol. 42, no. 9, pp. 1233-1246. https://doi.org/10.1134/S0012266106090023
  7. Ladyzhenskaya O.A., Uraltseva N.N. Linejnye i kvazilinejnye uravneniya ellipticheskogo tipa [Linear and quasi-linear equations of elliptic type]. Moscow, Nauka Publ., 1973, 538 p. (in Russian)
  8. Nakhushev A.M. Nagruzhennye uravneniya i ih primenenie [Loaded equations and their application]. Moscow, Nauka Publ., 2012, 231 p. (in Russian)
  9. Popov N.S. O razreshimosti kraevyh zadach dlya mnogomernyh parabolicheskih uravnenij chetvertogo poryadka s nelokal’nym granichnym usloviem integral’nogo vida [On the solvability of boundary value problems for multidimensional parabolic equations of the fourth order with a nonlocal boundary condition of the integral form]. Matematicheskie zametki SVFU [NEFU Mathematical Notes], 2016, vol. 23, no. 1, pp. 79-86.
  10. Popov N.S. O razreshimosti kraevoj zadachi dlya mnogomernyh psevdogiperbolicheskih uravnenij s nelokal’nym granichnym usloviem integral’nogo vida [O solvability of a boundary value problem for multidimensional pseudohyperbolic equations with a nonlocal boundary condition of integral form]. Matematicheskie zametki SVFU [NEFU Mathematical Notes], 2014, vol. 21, no. 2, pp. 69-80.
  11. Popov N.S. Solvability of a boundary value problem for a pseudoparabolic equation with nonlocal integral conditions. Differential Equations, 2015. vol. 51, no. 3, pp. 362-375. https://doi.org/10.1134/S0012266115030076
  12. Trenogin V.A. Funkcional’nyj analiz [Functional analysis]. Moscow, Nauka Publ., 1980, 488 p. (in Russian)
  13. Sobolev C.L. Nekotorye primeneniya funkcional’nogo analiza v matematicheskoj fiziki [Some applications of functional analysis in mathematical physics]. Moscow, Nauka Publ., 1988. 251 p. (in Russian)
  14. Bazant Z., Jirasek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress. J. Eng. Mech., 2002, no. 128, pp. 1-20.
  15. Egorov I.E. Vragov boundary value problem with integral boundary condition for a mixed type equation. AIP Conference Proceedings. 2019, 2172, 030005.
  16. Lions J.L. Quelques Methodes de Resolution des Problemes aux Limites non Lineaires. Paris, Dunod Publ., 1969, 570 p.
  17. Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, North–Holland Publ., 1978, 519 p.

Full text (russian)