«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2021. Vol. 35

Optimization of impulsive control systems with intermediate state constraints

Author(s)
N. S. Maltugueva, N.I. Pogodaev, O.N. Samsonyuk
Abstract

In this paper, we consider an optimal impulsive control problem with intermediate state constraints. The peculiarity of the problem consists in a non-standard way of specifying of intermediate constraints. So the constraints must be satisfied for at least one selection of a set-valued solution to the impulsive control system. We prove a theorem for the existence of an optimal control and propose the reduction procedure that transforms the initial optimal control problem with intermediate constraints into a hybrid problem with control parameters. This hybrid problem gives an equivalent description of the optimal impulsive control problem. We discuss a numerical algorithm based on a direct collocation method and give a schema to the corresponding numerical calculations for a test example.

About the Authors

Nadezhda Maltugueva, Programmer, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 45-30-37, e-mail: malt@icc.ru

Nikolay Pogodaev, Cand. Sci. (Phys.–Math.), Senior Research Scientist, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 45-30-52, e-mail: n.pogodaev@icc.ru

Olga Samsonyuk, Cand. Sci. (Phys.–Math.), Senior Research Scientist, Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952)45-31-51, e-mail: samsonyuk.olga@gmail.com

For citation

Maltugueva N.S., Pogodaev N.I., Samsonyuk O.N. Optimization of Impulsive Control Systems with Intermediate State Constraints. The Bulletin of Irkutsk State University. Series Mathematics, 2021, vol. 35, pp. 18-33. https://doi.org/10.26516/1997-7670.2021.35.18

Keywords
impulsive control, trajectory of bounded variation, intermediate state constraints, numerical method
UDC
517.977.5
MSC
93C10, 93C30
DOI
https://doi.org/10.26516/1997-7670.2021.35.18
References
  1. Arutyunov A., Karamzin D., Lobo Pereira F. Optimal Impulsive Control. Lecture Notes in Control and Information Sciences, Springer, Cham, 2019, vol. 477. https://doi.org/10.1007/978-3-030-02260-0
  2. Kelly M. An introduction to trajectory optimization: How to do your own direct collocation. SIAM Review, 2017, vol. 59, no. 4, pp. 849–904. https://epubs.siam.org/doi/pdf/10.1137/16M1062569
  3. Maltugueva N., Pogodaev N., Samsonyuk O. Optimality Conditions and Numerical Algorithms for Hybrid Control Systems. Khachay M., Kochetov Y., Pardalos P. (eds.). Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science, Springer, Cham, 2019, vol. 11548, pp. 474-488. https://doi.org/10.1007/978-3-030-22629-9
  4. Miller B.M. The generalized solutions of nonlinear optimization problems with impulse control. SIAM J. Control Optim., 1996, vol. 34, pp. 1420–1440. https://doi.org/10.1137/S0363012994263214
  5. Miller B.M., Rubinovich E.Ya. Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations. Autom. Remote Control, 2013, vol. 74, no. 12, pp. 1969–2006. https://doi.org/10.1134/S0005117913120047
  6. Miller B.M., Rubinovich E.Ya. Dynamical systems with discontinuous solutions and problems with unbounded derivatives. The Bulletin of Irkutsk State University. Series Mathematics, 2017, vol. 19, pp. 136–149. https://doi.org/10.26516/1997-7670.2017.19.136
  7. Miller B.M., Rubinovich E.Ya. Optimization of Dynamic Systems with Impulsive Control and Shock Impacts. Moscow, LENAND/URSS Publ., 2019. (in Russian)
  8. Samsonyuk O.N. Optimality conditions for optimal impulsive control problems with multipoint state constraints. Journal of Global Optimization, 2020, vol. 34, pp. 1420–1440. https://doi.org/10.1007/s10898-019-00868-w
  9. Samsonyuk O.N., Sorokin S.P. Optimality Conditions for Impulsive Processes with Intermediate State Constraints. The 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) (STAB), Moscow, Russia, 3–5 June 2020. IEEE, 2020. https://doi.org/10.1109/STAB49150.2020.9140658
  10. Srochko V.A. Iterative Methods for Solving of Optimal Control Problems. Moscow, Fizmatlit Publ., 2000, 160 p.
  11. Srochko V.A., Antonik V.G., Rozinova N.S. Methods of bilinear approximations for solving optimal control problems. The Bulletin of Irkutsk State University. Series Mathematics, 2011, no. 3, pp. 146–157.
  12. Von Stryk O., Bulirsch R. Direct and indirect methods for trajectory optimization. Annals of Operations Research, 1992, vol. 37, pp. 357–373.
  13. Zavalishchin S.T., Sesekin A.N. Dynamic Impulse Systems: Theory and Applications. Mathematics and Its Applications, Springer, Netherlands, 1997, vol. 394. https://doi.org/10.3390/app8091680

Full text (english)