«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2020. Vol. 34

The Role of a Priori Estimates in the Method of Non-local Continuation of Solution by Parameter

Author(s)
N. A. Sidorov
Abstract

An iterative method for continuation of solutions with respect to a parameter is proposed. The nonlocal case is studied when the parameter belongs to the segment of the real axis. An iterative scheme for continuing the solution is constructed for a linear equation in Banach spaces with a linear operator continuously depending on the parameter, satisfying the Lipschitz condition with respect to the parameter. The generalization of this result on a nonlinear equation in Banach spaces is proposed. The iterative scheme of the method of continuation of the solution by parameter using the Newton-Kantorovich method is constructed. An priori estimates of solutions enable solution construction for arbitrary parameters.

About the Authors

Nikolai Sidorov, Dr. Sci. (Phys.–Math.), Prof., Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: sidorovisu@gmail.com

For citation

Sidorov N.A. The Role of a Priori Estimates in the Method of Non-local Continuation of Solution by Parameter. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 34, pp. 67-76. (in Russian) https://doi.org/10.26516/1997-7670.2020.34.67

Keywords
global solvability, parameter continuation method, homotopy analysis method, Newton-Kantorovich method, operator equation, uniqueness of solution
UDC
517.98
MSC
47H99
DOI
https://doi.org/10.26516/1997-7670.2020.34.67
References
  1. Vainberg M.M., Trenogin V.A. Theory of branching of solutions of nonlinear equations. Groningen, Wolters-Noordhoff B.V., 1964, 510 p.
  2. Gorbunov V.K., L’vov A.G. Postroenie proizvodstvennyh funkcij po dannym ob investiciyah [The Construction of Production Functions Using Investment Data]. Ekonom. i Matem. Metody, 2012, vol. 48, no. 2, pp. 95–107. (in Russian)
  3. Korpusov M.O., Panin A.A. Lekcii po lineinomu i nelineinomu funkcional’nomu analizu [Lectures on linear and nonlinear functional analysis], vol. 3, Nonlinear classes. Moscow, Physics Faculty MSU Publ., 2016, 259 p. (in Russian)
  4. Krasnosel’skii M.A. Topological methods in the theory of nonlinear integral equations. Pergamon Press, Oxford, London, New York, Paris, 1964, 395 p.
  5. Loginov B.V. Teoriya vetvleniya reshenij nelinejnyh uravnenij v usloviyah gruppovoj invariantnosti [Branching solutions theory of nonlinear equations under group invariance conditions]. Tashkent, FAN Publ., 1985, 185 p. (in Russian)
  6. Lusternik L.A. Some issues of nonlinear functional analysis. Russian math. surveys., 1956, vol. 6, no. 11, pp.145-168.
  7. Trenoguine V.A. Analyse fonctionnelle [traduit du russe par V. Kotliar]. Moscow, Mir Publ., 1985.
  8. Fedorov A.A., Berdnikov A.S., Kurochkin V.E. The polymerase chain reaction model analyzed by the homotopy perturbation method. Journal of Mathematical Chemistry, 2019, vol. 57, pp. 971-985. https://doi.org/10.1007/s10910-018-00998-8.
  9. He J.H. Homotopy perturbation technique. Comp. Meth. Appl. Mech. Engrg., 1999, vol. 178, pp. 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3.
  10. He J.H. Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and Computation, 2003, vol. 135, pp. 73-79. https://doi.org/10.1016/S0096-3003(01)00312-5
  11. Liao S. On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 2004, vol. 147, no. 2, pp. 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7
  12. Loginov B.V., Sidorov N.A. Group symmetry of the Lyapunov-Schmidt branching equation and interative methods in the problem of a bifurcation point. Mathematics of the USSR - Sbornik, 1992, vol. 73, no. 1, pp. 67-77. https://doi.org/10.1070/SM1992v073n01ABEH002535
  13. Noeiaghdam S., Dreglea A., He J., Avazzadeh Z., Suleman M., Araghi M.A.F., Sidorov D.N., Sidorov N.A. Error estimation of the homotopy perturbation method to solve second kind Volterra integral equations with piecewise smooth kernels: application of the CADNA Library. Symmetry, 2002, vol. 12, 1730, 10, pp. 1-20. https://doi.org/10.3390/sym12101730
  14. Sidorov N.A., Sidorov D.N., Dreglea A.I. Solvability and bifurcation of solutions of nonlinear equations with Fredholm operator. Symmetry, 2020, vol. 12, 912. https://doi.org/10.3390/sym12060912.
  15. Sidorov N.A., Trufanov A.V. Nonlinear operator equations with a functional perturbation of the argument of neutral type. Differential Equations, 2009, vol. 45, pp. 1840-1844. https://doi.org/10.1134/S0012266109120155
  16. Sidorov N.A. A class of degenerate differential equations with convergence. Mathematical Notes of the Academy of Sciences of the USSR, 1984, vol. 35, pp. 300-305. https://doi.org/10.1007/BF01139992
  17. Sidorov N.A., Sidorov D.N., Krasnik A.V. Solution of Volterra operator-integral equations in the nonregular case by the successive approximation method. Differential Equations, 2010, vol. 46, pp. 882-889. https://doi.org/10.1134/S001226611006011X
  18. Sidorov N.A., Sidorov D.N., Sinitsyn A.V. Toward general theory of differentialoperator and kinetic models. Book Series: World Scientific Series on Nonlinear Science Series A vol. 97. Eds. L. Chua. S’pore, World Scientific, 2020, 400 p. https://doi.org/10.1142/11651
  19. Sidorov D.N., Sidorov N.A. Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators. Vestnik YuUrGU. Ser. Mat. Model Progr., 2017, vol. 10, no. 2, pp. 63-73. https://doi.org/10.14529/mmp170205
  20. Sidorov N.A., Leont’ev R.Yu., Dreglea A.I. On small solutions of nonlinear equations with vector parameter in sectorial neighborhoods. Mathematical Notes, 2012, vol. 91, pp. 90-104. https://doi.org/10.1134/S0001434612010105
  21. Trenogin V.A. Locally invertible operators and the method of continuation with respect to parameter. Functional Analysis and its Applications, 1996, vol. 30, no. 2, pp. 93-95. https://doi.org/10.1007/BF02509460

Full text (russian)