«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2020. Vol. 34

Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order

Author(s)
G. G. Petrosyan
Abstract

The present paper is concerned with an antiperiodic boundary value problem for a semilinear differential equation with Caputo fractional derivative of order q ∈ (1, 2) considered in a separable Banach space. To prove the existence of a solution to our problem, we construct the Green’s function corresponding to the problem employing the theory of fractional analysis and properties of the Mittag-Leffler function . Then, we reduce the original problem to the problem on existence of fixed points of a resolving integral operator. To prove the existence of fixed points of this operator we investigate its properties based on topological degree theory for condensing mappings and use a generalized B.N. Sadovskii-type fixed point theorem.

About the Authors

Garik Petrosyan, Cand. Sci. (Phys.–Math.), Leading Researcher, Research Center, Voronezh State University of Engineering Technologies, 19, Revolutsii Prospect, Voronezh, 394036, Russian Federation, tel.: (3952)242210, e-mail: garikpetrosyan@yandex.ru

For citation

Petrosyan G.G. Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 34, pp. 51-66. https://doi.org/10.26516/1997-7670.2020.34.51

Keywords
Caputo fractional derivative, semilinear differential equation, boundary value problem, fixed point, condensing mapping, measure of noncompactness
UDC
517.929
MSC
34K09; 34K37; 47H04; 47H08; 47H10
DOI
https://doi.org/10.26516/1997-7670.2020.34.51
References
  1. Afanasova M., Petrosyan G. On the boundary value problem for functionaldifferential inclusion of fractional order with general initial condition in a Banach space. Russian Mathematics, 2019, vol. 63, no. 9, pp. 1-12. https://doi.org/10.3103/S1066369X19090019
  2. Agarwal R.P., Ahmad B. Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Computers and Mathematics with Applications, 2011, vol. 62, pp. 1200–1214. https://doi.org/10.1016/j.camwa.2011.03.001
  3. Ahmad B., Nieto J.J. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topological Methods in Nonlinear Analysis, 2010, vol. 35, pp. 295–304.
  4. Bogdan V.M. Generalized vectorial Lebesgue and Bochner integration theory. arXiv:1006.3881v1 [math.FA], 2010, 86 p.
  5. Chen Y., Nieto J.J., O’Regan D. Antiperiodic solutions for fully nonlinear first-order differential equations. Math. Comput. Modelling, 2007, vol. 46, pp. 1183–1190. https://doi.org/10.1016/j.mcm.2006.12.006
  6. Delvos F. J., Knoche L. Lacunary interpolation by antiperiodic trigonometric polynomials. BIT, 1999, vol. 39, pp. 439–450. https://doi.org/10.1023/A:1022314518264
  7. Fichtenholz G.M. Course in Differential and Integral Calculus. Moscow, Fizmatlit Publ., 2006, vol. 1, 607 p.(in Russian)
  8. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler Functions, Related Topics and Applications. Berlin, Heidelberg, Springer-Verlag, 2014, 443 p.
  9. Hilfer R. Applications of Fractional Calculus in Physics. Singapore, World Scientific, 2000, 472 p.
  10. Kamenskii M., Obukhovskii V., Zecca P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Berlin, New-York, de Gruyter Series in Nonlinear Analysis and Applications, 7, Walter de Gruyter, 2001, 231 p.
  11. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.C. On semilinear fractional order differential inclusions in Banach spaces. Fixed Point Theory, 2017, vol. 18, no. 1, pp. 269-292. https://doi.org/10.24193/fpt-ro.2017.1.22
  12. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.C. On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces. Fixed Point Theory and Applications, 2017, vol. 28, no. 4, pp. 1-28. https://doi.org/10.1186/s13663-017-0621-0
  13. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, Elsevier Science B.V., North-Holland Mathematics Studies, 2006, 523 p.
  14. Obukhovskii V.V., Gelman B.D. Multivalued Maps and Differential Inclusions. Elements of Theory and Applications. Singapore, World Scientific, 2020, 220 p.
  15. Podlubny I. Fractional Differential Equations. San Diego, Academic Press, 1999, 340 p.
  16. Shao J. Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys. Lett. A, 2008, vol. 372, pp. 5011–5016. https://doi.org/10.1016/j.physleta.2008.05.064
  17. Tarasov V.E. Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. London, New York, Springer, 2010, 504 p.

Full text (english)