«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2020. Vol. 33

Chebyshev Approximations by Least Squares Method

Author(s)
V. I. Zorkaltsev, E. V. Gubiy
Abstract

We consider the problem of linear approximation in the form of the minimization problem of the weighted Chebyshev norm, and that in the form of the minimization problem of the weighted Euclidean norm of the residual vector. We give an algorithm for the unambiguous calculation in all cases of the Chebyshev approximation that does not require the Haar condition. The theorem obtained indicates that any approximation by the method of least squares (for any set of positive weight coefficients in the minimized Euclidean norm) can be represented as the Chebyshev approximation based on the choice of weight coefficients in the Chebyshev norm. As an example we consider the approximation of the reduced fuel supply costs of a settlement based on an energy plantation as a quadratic dependence on volumes of reserved funds.

About the Authors

Valeriy Zorkaltsev, Dr. Sci. (Technical), Prof., Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664033, Russian Federation, tel.: (914)9523961, email:zork@isem.irk.ru

Elena Gubiy, Melentiev Energy Systems Institute SB RAS, 130, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (914)9279143, email: egubiy@gmail.com

For citation

Zorkaltsev V.I., Gubiy E.V. Chebyshev Approximations by Least Squares Method. The Bulletin of Irkutsk State University. Series Mathematics, 2020, vol. 33, pp. 3-19. (in Russian) https://doi.org/10.26516/1997-7670.2020.33.3

Keywords
Chebyshev approximation, Haar condition, least squares method, reliability of fuel supply from energy plantations
UDC
519.6
MSC
65D15
DOI
https://doi.org/10.26516/1997-7670.2020.33.3
References
  1. Burov V.N. Nekotorye effektivnye sposoby resheniya zadachi P.L.Chebysheva o nailuchshem priblizhenii [Some effective methods of solving the Chebyshev problem on best approximation]. Izv. Vyssh. Uchebn. Zaved. Mat., 1957, no 1, pp. 67-79. (in Russian)
  2. Gubiy E.V., Zorkaltsev V.I. Effektivnost’ energeticheskikh plantatsiy [Energy plantation efficiency], Novosibirsk, Nauka Publ., 2018, 96 p. (in Russian)
  3. Dem’yanov V.F., Malozemov V.N. Vvedenie v minimaks [Introduction to Minimax], Moscow, Nauka Publ., 1972, 368 p. (in Russian)
  4. Dolganov R.L. Chebyshevskaya approksimatsiya asimptoticheski vypuklymi semeystvami funktsiy [Chebyshev approximation by asymptotically convex families of functions], Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no 7, pp. 35-41. (in Russian)
  5. Zorkal’tsev V.I. Interior point method: history and prospects. Computational Mathematics and Mathematical Physics, 2019, vol. 59, pp. 1597-1612. https://doi.org/10.1134/S0965542519100178
  6. Zorkal’tsev V.I. Octahedral and Euclidean projections of a point to a linear manifold. Proceedings of the Steklov Institute of Mathematics, 2014, vol. 284, pp. 185-197. https://doi.org/10.1134/S0081543814020163
  7. Zorkaltsev V.I. Chebyshevskie priblizheniya mogut obkhodit’sya bez usloviya Khaara [Chebyshev approximations can dispense with the Haar condition]. Materialy Mezhdunarodnogo simpoziuma, posvyashchennogo 100-letiyu matematicheskogo obrazovaniya v Vostochnoy Sibiri i 80-letiyu so dnya rozhdeniya professora O. V. Vasil’eva «Dinamicheskie sistemy, optimal’noe upravlenie i matematicheskoe modelirovanie» [Proceedings of the International Symposium dedicated to the 100th anniversary of mathematical education in Eastern Siberia and the 80th anniversary of the birth of Professor O. V. Vasiliev "Dynamical systems, optimal control and mathematical modeling"], Irkutsk, Irkutsk State University Publ., 2019, pp. 29-33. (in Russian)
  8. Collatz L., Krabs W. Approximations theorie. Tschebyscheffsche Approximation mit Anwendungen. B.G. Teubner, Stuttgart, 1973, 208 p.
  9. Kolmogorov A.N. Zamechaniya po povodu mnogochlenov P.L. Chebysheva naimenee uklonyayushchikhsya ot zadannoy funktsii [A remark on the polynomials of P.L. Chebyshev deviating the least from a given function]. Uspekhi Mat. Nauk, 1948, vol. 3, no 1(23), pp. 216-221. (in Russian)
  10. Malozemov V.N. The best uniform approximation of functions of several arguments. USSR Computational Mathematics and Mathematical Physics, 1970, vol. 10, no 3, pp. 28-43. https://doi.org/10.1016/0041-5553(70)90112-6
  11. Nikol’skii S.M. Approximation of functions of several variables and imbedding theorems. Springer, Berlin, Heidelberg, 1975, 420 p. https://doi.org/10.1007/978-3-642-65711-5
  12. Rockafellar R. Convex analysis, Princeton, New Jersey, Princeton University Press, 1970, 472 p.
  13. Tikhomirov V.M. Some problems in approximation theory. Mathematical Notes of the Academy of Sciences of the USSR, 1971, vol. 9, pp. 343-350. https://doi.org/10.1007/BF01094364
  14. Chebyshev P.L. Voprosy o naimen’shikh velichinakh, svyazannye s priblizhennym predstavleniem funktsiy. Polnoe sobranie sochineniy. Tom 2 [Questions on smallest quantities connected with the approximate representation of functions, Collected works, vol. 2], Moscow, Leningrad, AN SSSP Publ., 1947, pp. 151-235. (in Russian)
  15. Haare A. Die Minkowskische Geometrie und die Annдherung an stetige Funktionen, Math. Ann., 1918, vol. 78, no 3б, pp. 415–127.

Full text (russian)