«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «MATHEMATICS»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «MATEMATIKA»
ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2019. Vol. 29

Ultraparabolic Equations with Operator Coefficients at the Time Derivatives

Author(s)
A. I. Kozhanov
Abstract

The article is devoted to the study of the solvability of boundary value problems for third-order Sobolev-type differential equations of the third order with two time variables (such equations are also called composite-type equations or equations not solved for the derivative). The peculiarities of the equations under study are, firstly, that the differential operators acting at the time derivatives are not assumed inverse, and, secondly, that the statements of boundary value problems for them are determined by the coefficients of these differential operators. For the problems proposed in the article, we prove existence and uniqueness theorems for regular solutions (solutions having all weak derivatives in the sense of Sobolev involved in the equation). The technique of proving the existence theorems is based on a special regularization of the equations under study, a priori estimates, and passage to the limit.

About the Authors

Alexandr Kozhanov, Dr. Sci. (Phys.–Math.), Prof., Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 4 Koptyug Ave., Novosibirsk, 630090, Russian Federation, tel.: (8-383)3297683, 8-9139276052, e-mail: kozhanov@math.nsu.ru

For citation

Kozhanov A.I. Ultraparabolic Equations with Operator Coefficients at the Time Derivatives. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 29, pp. 120-137. https://doi.org/10.26516/1997-7670.2019.29.120

Keywords
ultraparabolic equations, irreversible operator coefficients, boundary problems, regular solutions, existence, uniqueness
UDC
517.946
MSC
35K70, 35M20
DOI
https://doi.org/10.26516/1997-7670.2019.29.120
References
  1. Demidenko G.V., Uspenskii S.V. Partial Differential Equations and Systems not Solvable with Respect to Highest Order Derivatives. New-York, Marsel Dekker Inc., 2003. https://doi.org/10.1201/9780203911433
  2. Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. New-York, Marsel Dekker Inc., 1999. https://doi.org/10.1201/9781482276022
  3. Hayashi N, Kaikina E.I., Naumkin P.I., Shismarev I.A. Asymptotics for Dissipative Nonlinear Equation. Berlin, Springer–Verlaq Publ., 2006.
  4. Kopachevskiy N.D. Integrodifferetsyal’nye Uravneniya Vol’terra v Gil’bertovom Prostranstve. Simferopol’, Tauride National University Publ., 2012. (in Russian)
  5. Korpusov M.O. Razrushenie v Neklassicheskih Nelocal’nyh Uravneniyah. Moscow, Librokom Publ., 2011. (in Russian)
  6. Kozhanov A.I. Composite Type Equations and Inverse Problems. Utrecht, VSP, 1999.
  7. Kozlov V., Maz’ya V. Differential Equation with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations. Berlin, Springer–Verlaq Publ., 1999.
  8. Ladyzhenskaia O.A. Ob Integral’nyh Otsenkah Shodimosti Priblizhennyh Metodov i Resheniiah v Funktsyanalah dlya Lineynyh Ellipticheskih Operatorov. Vestnik LGU, 1958, no. 7. Ser. Matem., Mekh., Astr., iss. 2, pp. 60-69. (in Russian)
  9. Ladyzhenskaia O.A., Ural’tseva N.N. Linear and Quasilinear Elliptic Equations. Academic Press Publ., 1968.
  10. Pyatkov S.G. Operator Theory Nonclassical Problems. Utrecht, VSP, 2003. https://doi.org/10.1515/9783110900163
  11. Sveshnikov A.G., Al’shin A.B., Korpusov M.O., Pletner Yu.D. Lineynye i Nelineynye Uravneniya Sobolevskogo Typa. Moscow, Fizmatlit Publ., 2007. (in Russian)
  12. Sobolev S.L. Some Applications of Functional Analysis in Mathematical Physics. American Mathematical Soc., 1991.
  13. Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Utrecht, VSP, 2003.
  14. Trenogin V.A. Funktsyanalnyi Analiz. Moscow, Nauka Publ., 1980. (in Russian)
  15. Umarov Kh.G. Polugruppy Operatorov i Tochnye Resheniya Zadach Anizotropnoy Fil’tratsyi. Moscow, Fizmatlit Publ., 2009.(in Russian)

Full text (english)