ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2019. Vol. 28

Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials

K. Kumazaki

In the previous study [5] we proved the existence of a solution locally in time for a two-scale problem which is given as a mathematical model for moisture transport arising in a concrete carbonation process. The two-scale model consists of a diffusion equation of the relative humidity in a macro domain and the free boundary problems describing a wetting and drying process in infinite micro domains. In this paper, by improving the diffusion equation of the relative humidity based on the experimental result [3; 10], we construct a globally-in-time solution of the two scale model. For the global existence, we obtain uniform estimates and uniform boundedness of the solution with respect to time and use the method of extending local solutions.

About the Authors

Kota Kumazaki, Doctor of Philosophy (Mathematics), Associate Professor, Department of Education, Nagasaki University, 1-14, Bunkyo-cho, Nagasaki, 852-8521, Japan; e-mail: k.kumazaki@nagasaki-u.ac.jp

For citation

Kumazaki K. Global Existence of a Solution for a Multiscale Model Describing Moisture Transport in Concrete Materials. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 28, pp. 69-84. https://doi.org/10.26516/1997-7670.2019.28.69

two-scale model, free boundary problem, quasilinear parabolic equation, moisture transport
35R35, 35K49, 76S05
  1. Aiki T., Kumazaki K. Uniqueness of a solution to a mathematical model describing moisture transport in concrete material. Netw. Heterogeneous Media, 2014, vol. 9, pp. 683-707. https://doi.org/10.3934/nhm.2014.9.683
  2. Aiki T., Kumazaki K. Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process, Adv. Math. Sci. Appl., 2011, vol. 21, pp. 361-381.
  3. Bary B., Sellier A. Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete, Cem. Concr. Res., 2004, vol. 34, pp. 1859-1872. https://doi.org/10.1016/j.cemconres.2004.01.025
  4. Kumazaki K. Measurability of a solution of a free boundary problem describing adsorption phenomenon. Adv. Math. Sci. Appl., 2016, vol. 26, pp. 19-27.
  5. Kumazaki K., Aiki T., Sato N., Murase Y. Multiscale model for moisture transport with adsorption phenomenon in concrete materials. Appl. Anal., 2018, vol. 97, pp. 41-54. https://doi.org/10.1080/00036811.2017.1325473
  6. Ladyzenskaja O.A., Solonnikov V.A., Ural’ceva N.N. Linear and Quasi-Linear Equations of Parabolic Type, Transl. Math. Monograph 23, Amer. Math. Soc., Providence R. I., 1968. https://doi.org/10.1090/mmono/023 
  7. Maekawa K., Chaube R., Kishi T. Modeling of concrete performance, Taylor and Francis, 1999.
  8. Maekawa K., Ishida T., Kishi T. Multi-scale modeling of concrete performance. J. Adv. Concrete Technol., 2003, vol. 1, pp. 91-126. https://doi.org/10.3151/jact.1.91
  9. Sato N., Aiki T., Murase Y., Shirakawa K., A one dimensional free boundary problem for adsorption phenomena, Netw. Heterogeneous media., 2014, vol. 9, pp. 655-668. https://doi.org/10.3934/nhm.2014.9.655
  10. Zhang Q. Mathematical and numerical study of carbonation in porous concrete materials. Appl. Math. Comput., 2016, vol. 281, pp. 16-27. https://doi.org/10.1016/j.amc.2016.01.034

Full text (english)