ISSN 1997-7670 (Print)
ISSN 2541-8785 (Online)

List of issues > Series «Mathematics». 2018. Vol. 26

Automorphisms of some magmas of order k + k2

A. V. Litavrin

This paper is devoted to the study of automorphisms of finite magmas and to the representation of the symmetric permutation group Sk and some of its subgroups by automorphism groups of finite magmas. The theory that studies automorphism groups of magmas is well developed and is represented by a multitude of works, when magma is a quasigroup, semigroup, loop, monoid or group. There are also studies in which problems related to the study of automorphisms of magmas that are not a semigroup or quasigroup are considered.

In this paper, we introduce some finite magmas 𝕾 = (V∗) of order + k2. For magma 𝕾  it was possible to describe the automorphism group and write down the general form of the automorphism. In addition, the connection between automorphisms of magmas 𝕾  and permutations of a finite set of k elements has been revealed. All automorphisms of magma 𝕾  are parametrized by permutations from a certain subgroup (a description of this subgroup is given) of the symmetric permutation group Sk

In addition, it is established that the group Sk is isomorphic to the group of all automorphisms Aut (𝕾 ) of a suitable magma 𝕾 of order k + k2.

About the Authors

Andrey V. Litavrin, Cand. Sci. (Phys.–Math.), Siberian Federal University, 79, Svobodny pr., Krasnoyarsk, 660041, Russian Federation, e-mail: anm11@rambler.ru

For citation
Litavrin A.V. Automorphisms of some magmas of order + k2. The Bulletin of Irkutsk State University. Series Mathematics, 2018, vol. 26, pp. 47-61. (in Russian) https://doi.org/10.26516/1997-7670.2018.26.47
automorphisms of a magma, automorphisms of a groupoid, groups of automorphisms
17B40, 17B30
  1. Birkgof G. O gruppakh avtomorfizmov [On groups of automorphisms]. Revista de la Union Math. Argentina, 1946, no. 4, pp. 155–157.
  2. Bunina E.I., Semenov P.P. Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings. J. Math. Sci., 2009, vol. 162, no. 5, pp. 633–655. https://doi.org/10.1007/s10958-009-9650-5
  3. Gluskin L.M. Avtomorfizmy mul’tiplikativnykh polugrupp matrichnykh algebr [Automorphisms of multiplicative semigroups of matrix algebras]. Uspekhi matematicheskikh nauk, 1956, vol. 11, no. 1, pp. 199–206. (In Russian).
  4. Gluskin L.M. Avtomorfizmy polugrupp  binarnykh otnosheniy  [Automorphisms of semigroups of binary relations]. Mat. zapiski Ural. State Univ., 1967, vol. 6, pp. 44-54. (In Russian).
  5. Il’inykh A.P. Classification of finite groupoids with 2-transitive automorphism group. Russian Acad. Sci. Sb. Math. 1995, vol. 82, no. 1, pp. 175–197. https://doi.org/10.1070/SM1995v082n01ABEH003557
  6. Il’inykh A.P. Groupoids of order q(1)/2q=2r, with automorphism group isomorphic to SL(2,q). Siberian Math. J. 1995, vol. 36, no. 6, pp. 1159–1163. https://doi.org/10.1007/BF02106838
  7. Levchuk V.M. Avtomorfizmy unipotentnykh podgrupp grupp Shevalle [Automorphisms of unipotent subgroups of Chevalley groups]. Algebra i logika, 1990, vol. 29, no. 2, pp. 141-161. no. 3, pp. 316-338. (In Russian).
  8. Levchuk V.M. Svyazi unitreugol’noy gruppy s nekotorymi kol’tsami. Ch. 2. Gruppy avtomorfizmov [Connections of the unitriangular group with certain rings. Part 2. Automorphism groups]. Sibirskiy matem. zhurnal, 1983, vol. 24, no. 4, pp. 543–557. (In Russian).
  9. Mal’tsev A.I. Algebraicheskie sistemy [Algebraic systems]. Moscow, Nauka Publ., 1970, 392 p. (In Russian).
  10. Merzlyakov Yu.I. Avtomorfizmy klassicheskikh grupp [Automorphisms of classical groups]. Moscow, Mir Publ., 1976, 272 p. (In Russian).
  11. Mikhalev A.V., Shatalova M.A. Avtomorfizmy i antiavtomorfizmy, polugruppy obratimykh matrits s neotritsatel’nymi elementami [Automorphisms and anti- automorphisms, semigroups of invertible matrices with nonnegative elements]. Matem. sb., 1970, vol. 81, no. 4, pp. 600–609. (In Russian).
  12. Petechuk V.M. Automorphisms of matrix groups over commutative rings. Mathematics of the USSR-Sbornik. 1983, vol. 45, no. 4, pp. 527–542.
  13. Plotkin B.I. Gruppy avtomorfizmov algebraicheskikh sistem [Groups of automorphisms of algebraic systems]. Moscow, Nauka Publ.,1966.
  14. Khalezov E.A. Avtomorfizmy matrichnykh polugrupp [Automorphisms of matrix semigroups]. Doklady AN SSSR, 1954, vol. 96, no. 2, pp. 245-248. (In Russian).
  15. Khalezov E.A. Avtomorfizmy primetivnykh kvazigrupp [Automorphisms of primitive quasigroups]. Matematicheskiy sbornik, 1961, vol. 61, no. 3, pp. 329-342. (In Russian).
  16. Shmatkov V.D. Isomorphisms and Automorphisms of Matrix Algebras Over Lattices. J. Math. Sci., 2015, vol. 211, no. 3, pp. 434–440. https://doi.org/10.1007/s10958-015-2614-z
  17. Abe E. Automorphisms of Chevalley groups over commutative rings. Algebra and Analysis, 1993, vol. 5, no. 2, pp.74–90.
  18. Bunina E.I. Automorphisms of Chevalley groups of different types over commutative rings. J. Algebra., 2012, vol. 355, no.1, pp. 154–170. https://doi.org/10.1016/j.jalgebra.2012.01.002
  19. Gibbs J. Automorphisms of certain unipotent groups. J. Algebra. 1970, vol. 14, no. 2, pp. 203–228.
  20. Groot J. Automorphism groups of rings. in: Int. Congr. of Mathematicians, Edinburgh., 1958, p. 18.
  21. Hahn A.J., James D.G., Weisfelier B. Homomorphisms of algebraic and classical groups: a survay. Can. Math. Soc., 1984, no. 4, pp. 249–296.
  22. Schreier O., van der Varden B.L. Die Automorphismen der projektiven Gruppen. Abh. Math. Sem. Univ. Hamburg., 1928, vol. 6, pp. 303–322.
  23. Seligman G.B. On automorphisms of Lie algebras of classical type. Trans. Amer. Math. Part III, 1960, vol. 97, pp. 286–316.

Full text (russian)